1. The Seasonal Patterns of Hydrographic and Biological Seasonal Patterns in the Ross Sea: A BGC-Argo Analysis
    Cao, R., W. Smith, W., Y. Zhong, S. Riser, K. Johnson, L.Talley, 2024. The Seasonal Patterns of Hydrographic and Biological Seasonal Patterns in the Ross Sea: A BGC-Argo Analysis. Submitted to Deep-Sea Res. II.
  2. One-third of Southern Ocean productivity is supported by dust deposition
    Weis, J., Z. Chase, C. Schallenberg et al. (2024) One-third of Southern Ocean productivity is supported by dust deposition. Nature 629, 603–608. DOI:10.1038/s41586-024-07366-4
  3. Global estimates of particulate organic carbon from the surface ocean to the base of the mesopelagic
    Fox, J.E.,  M. Behrenfeld, K.H. Halsey, et al (2024). Global estimates of particulate organic carbon from the surface ocean to the base of the mesopelagic. ESS Open Archive. DOI: 10.22541/essoar.171017314.40658424/v1
  4. Reviews and syntheses: expanding the global coverage of gross primary production and net community production measurements using Biogeochemical-Argo floats
    Izett, R. W., K. Fennel, A.C. Stoer and D.P. Nicholson (2024). Reviews and syntheses: expanding the global coverage of gross primary production and net community production measurements using Biogeochemical-Argo floats. Biogeosciences, 21, 13–47, DOI:10.5194/bg-21-13-2024
  5. Subantarctic Mode Water biogeochemical formation properties and interannual variability
    Bushinsky, S. M., & I. Cerovečki (2023). Subantarctic Mode Water biogeochemical formation properties and interannual variability. AGU Advances, 4, e2022AV000722. DOI:10.1029/2022AV000722
  6. Sparse observations induce large biases in estimates of the global ocean CO 2 sink: an ocean model subsampling experiment
    Hauck, J., C. Nissen, P. Landschützer, C. Rödenbeck, S. Bushinsky & A. Olsen (2023). Sparse observations induce large biases in estimates of the global ocean CO 2 sink: an ocean model subsampling experiment. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences381(2249), 20220063. DOI:10.1098/rsta.2022.0063
  7. Biogenic carbon pool production maintains the Southern Ocean carbon sink
    Huang, Y., A.J. Fassbender and S.M. Bushinsky (2023). Biogenic carbon pool production maintains the Southern Ocean carbon sink. Proceedings of the National Academy of Sciences120(18). DOI:10.1073/pnas.2217909120
  8. Majority of Southern Ocean Seasonal Sea Ice Zone Bloom Net Community Production Precedes Total Ice Retreat
    McClish, S., & S. M. Bushinsky (2023). Majority of Southern Ocean Seasonal Sea Ice Zone Bloom Net Community Production Precedes Total Ice Retreat. Geophysical Research Letters, DOI:10.1029/2023GL103459
  9. Ocean carbon from space: Current status and priorities for the next decade
    Robert J.W. Brewin, Shubha Sathyendranath, Gemma Kulk et al. (2023). Ocean carbon from space: Current status and priorities for the next decade. Earth-Science Reviews,Volume 240, 104386, ISSN 0012-8252. DOI:10.1016/j.earscirev.2023.104386.
  10. Estimating ocean net primary productivity from daily cycles of carbon biomass measured by profiling floats
    Stoer, A.C. and K. Fennel (2023), Estimating ocean net primary productivity from daily cycles of carbon biomass measured by profiling floats. Limnol. Oceanogr. Lett, 8: 368-375. DOI:10.1002/lol2.10295
  11. Operational monitoring of open-ocean carbon dioxide removal deployments: Detection, attribution, and determination of side effects
    Boyd, P.W., H. Claustre, L. Legendre, J.-P. Gattuso, and P.-Y. Le Traon. 2023. Operational monitoring of open-ocean carbon dioxide removal deployments: Detection, attribution, and determination of side effects. In Frontiers in Ocean Observing: Emerging Technologies for Understanding and Managing a Changing Ocean. E.S. Kappel, V. Cullen, M.J. Costello, L. Galgani, C. Gordó-Vilaseca, A. Govindarajan, S. Kouhi, C. Lavin, L. McCartin, J.D. Müller, B. Pirenne, T. Tanhua, Q. Zhao, and S. Zhao, eds, Oceanography 36(Supplement 1):2–10, DOI:10.5670/oceanog.2023.s1.2
  12. Environmental drivers of coccolithophore growth in the Pacific sector of the Southern Ocean
    Oliver, H.,  D.J. McGillicuddy, K.M. Krumhardt, M.C. Long, N.R. Bates, B.C. Bowler, et al. (2023). Environmental drivers of coccolithophore growth in the Pacific sector of the Southern Ocean. Global Biogeochemical Cycles, 37, e2023GB007751. DOI:10.1029/2023GB007751
  13. Evidence of phytoplankton blooms under Antarctic sea ice
    Horvat C., K. Bisson, S. Seabrook, A. Cristi and L.C. Matthes LC (2022). Evidence of phytoplankton blooms under Antarctic sea ice. Front. Mar. Sci. 9:942799. DOI:10.3389/fmars.2022.942799
  14. The relationship between nitrate and potential density in the ocean south of 30°S
    Xu, D., T. Wang, X. Xing & C. Bian (2022). The relationship between nitrate and potential density in the ocean south of 30°S. Journal of Geophysical Research: Oceans, 127, e2022JC018948. DOI:10.1029/2022JC018948
  15. Southern Ocean phytoplankton stimulated by wildfire emissions and sustained by iron recycling 
    Weis, J.,  C. Schallenberg,  Z. Chase, A.R. Bowie, B. Wojtasiewicz, M.M.G. Perron., et al. (2022). Southern Ocean phytoplankton stimulated by wildfire emissions and sustained by iron recycling. Geophysical Research Letters,  49, e2021GL097538. DOI:10.1029/2021GL097538
  16. New estimates of Southern Ocean annual net community production revealed by BGC-Argo floats
    Su, J.,  C. Schallenberg,  T. Rohr, P.G. Strutton, &  H.E. Phillips (2022).  Geophysical Research Letters,  49, e2021GL097372. DOI:10.1029/2021GL097372
  17. Seasonal cycles of phytoplankton and net primary production from biogeochemical argo float data in the south-west Pacific Ocean
    Chiswell, S.M., A. Gutiérrez-Rodríguez, M. Gall, K. Safi, R. Strzepek, M.R. Décima, S.D. Nodder (2022). Deep-Sea Research Part I. DOI:10.1016/j.dsr.2022.103834
  18. Bridging the gaps between particulate backscattering measurements and modeled particulate organic carbon in the ocean
    Galí, M., M. Falls, H. Claustre, O. Aumont and R. Bernardello (2022). Biogeosciences, 19, 1245–1275. DOI:10.5194/bg-19-1245-2022
  19. Enhanced ventilation in energetic regions of the Antarctic Circumpolar Current
    Dove, L. A., D. Balwada, A.F. Thompson & A.R. Gray (2022). Geophysical Research Letters, 49, e2021GL097574. DOI:10.1029/2021GL097574
  20. Argo Float Reveals Biogeochemical Characteristics Along the Freshwater Gradient Off Western Patagonia
    Galán A, Saldías GS, Corredor-Acosta A, Muñoz R, Lara C and Iriarte JL (2021). Front. Mar. Sci. 8:613265. DOI: 10.3389/fmars.2021.613265
  21. How are under ice phytoplankton related to sea ice in the Southern Ocean?
    Bisson, K. M., and B.B. Cael (2021).  Geophysical Research Letters, 48, e2021GL095051. DOI:10.1029/2021GL095051
  22. Evidence of episodic nitrate injections in the oligotrophic North Pacific associated with surface chlorophyll blooms
    Wilson, C. (2021). Journal of Geophysical Research: Oceans, 126, e2021JC017169. DOI:10.1029/2021JC017169 
  23. Linking Southern Ocean Mixed-Layer Dynamics to Net Community Production on Various Timescales
    Li, Z., M.S. Lozier, and N. Cassar (2021). Linking Southern Ocean mixed-layer dynamics to net community production on various timescales. Journal of Geophysical Research: Oceans,  126, e2021JC017537. DOI:10.1029/2021JC017537
  24. Evidence for the Impact of Climate Change on Primary Producers in the Southern Ocean
    Pinkerton, M.H., P.W. Boyd, S. Deppeler, A. Hayward, J. Höfer and S. Moreau (2021). Evidence for the Impact of Climate Change on Primary Producers in the Southern Ocean. Front. Ecol. Evol. 9:592027. DOI:10.3389/fevo.2021.592027
  25. Antarctica and the Southern Ocean [in “State of the Climate in 2020”]
    Stammerjohn, S. and T. Scambos, Eds. (2021). Bull. Amer. Meteor. Soc., 102 (8), S317–S355 DOI:10.1029/2020GL091748
  26. Constraining Southern Ocean CO2 flux uncertainty using uncrewed surface vehicle observations
    Sutton, A.J., N.L.Williams & B. Tilbrook (2021). Geophysical Research Letters, 48, e2020GL091748. DOI:10.1029/2020GL091748
  27. Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires
    Tang, W., J. Llort, J.Weis, et al.( 2021). Nature 597, 370–375 (2021). DOI: 10.1038/s41586-021-03805-8
  28. Particulate backscattering in the global ocean: A comparison of independent assessments
    Bisson, K. M., E. Boss, P.J. Werdell, A. Ibrahim and M.J. Behrenfeld (2021).  Geophysical Research Letters, 48, e2020GL090909. DOI:10.1029/2020GL090909
  29. Observational evidence of ventilation hotspots in the Southern Ocean
    Dove, L. A., A. F. Thompson, D. Balwada, and A.R. Gray (2021). Journal of Geophysical Research: Oceans, 126, e2021JC017178. DOI:10.1029/2021JC017178
  30. The subsurface biological structure of Southern Ocean eddies r evealed by BGC-Argo floats
    Jiaoyang, S., P.G.Strutton, and C.Schallenberg (2021). Journal of Marine Systems, 220. DOI:10.1016/j.jmarsys.2021.103569
  31. Deep Chlorophyll Maxima in the global ocean: occurrences, drivers and characteristics.
    Cornec, M., H. Claustre, A. Mignot, L. Guidi, L. Lacour, A. Poteau, F. D'Ortenzio, B. Gentili, C. Schmechtig (2021).  Global Biogeochemical Cycles, 35, e2020GB006759. DOI:10.1029/2020GB006759
  32. Glacial deep ocean deoxygenation driven by biologically mediated air–sea disequilibrium. 
    Cliff, E., S. Khatiwala & A. Schmittner (2021). Nat. Geosci. 14, 43–50. DOI:10.1038/s41561-020-00667-z
  33. Seasonal carbon dynamics in the near-global ocean
    Keppler, L., Landschützer, P., Gruber, N., Lauvset, S. K., & Stemmler, I. (2020). Global Biogeochemical Cycles, 34, e2020GB006571. DOI:10.1029/2020GB006571
  34. Sea surface kinetic energy as a proxy for phytoplankton light limitation in the summer pelagic Southern Ocean. Gradone, J. M., M. J. Oliver, A. R. Davies, C. Moffat, A. Irwin. (2020). Journal of Geophysical Research: Oceans, 125. e2019JC015646. DOI: 10.1029/2019JC015646
  35. Physical and biological controls of the Drake Passage pCO2 variability
    Jersild, A., & T. Ito (2020). Global Biogeochemical Cycles, 34, e2020GB006644.  DOI: 10.1029/2020GB006644
  36. Effect of Antarctic sea ice on chlorophyll concentration in the Southern Ocean,
    Behera, N., D. Swain, S. Sil (2020). Deep Sea Research Part II: Topical Studies in Oceanography, Volume 178,104853. DOI:10.1016/j.dsr2.2020.104853.
  37. Satellite observations of unprecedented phytoplankton blooms in the Maud Rise polynya, Southern Ocean
    Jena, B. and A.N. Pillai (2020). The Cryosphere, 14, 1385–1398. DOI:10.5194/tc-14-1385-2020
  38. BGC-Argo Detect Under Ice Phytoplankton Growth Before Sea Ice Retreat
    Hague, M. and M. Vichi (2020). Biogeosciences Discuss, in review. DOI:10.5194/bg-2020-257
  39. Remote assessment of the fate of phytoplankton in the Southern Ocean sea-ice zone
    Moreau, S., Boyd, P.W. & Strutton, P.G. (2020). Nat. Commun. 11, 3108. DOI:10.1038/s41467-020-16931-0
  40. Global variability of optical backscattering by non-algal particles from a Biogeochemical-Argo dataset 
    Bellacicco, M., M. Cornec, E. Organelli, R.J.W. Brewin, G. Neukermans, G. Volpe, M. Barbieux, A. Poteau, C. Schmechtig, F. D’Ortenzio, S. Marullo, H. Claustre, and J. Pitarch (2019). Geophysical Research Letters, 46. DOI: 10.1029/2019gl084078
  41. Evaluating satellite estimates of particulate backscatter in the global open ocean using autonomous profiling floats
    Bisson, K.M., E Boss, T.K. Westberry, M J. Behrenfeld (2019). Optics Express, 27. DOI: 10.1364/OE.27.030191
  42. Hydrothermal vents trigger massive phytoplankton blooms in the Southern Ocean
    Ardyna, M., L. Lacour, S. Sergi, F. d’Ovidio, J.-B. Sallée, M. Rembauville, S. Blain, A. Tagliabue, R. Schlitzer, C. Jeandel, K.R. Arrigo & H. Claustre (2019). Nature Communications, 2451,10, 1. DOI:10.1038/s41467-019-09973-6
  43. Biofloat observations of a phytoplankton bloom and carbon export in the Drake Passage
    Davies, A. R., Veron, F., Oliver, M. J. (2019). Deep-Sea Research Part II: | DOI: 10.1016/j.dsr.2019.02.004
  44. Recent reoccurrence of large open‐ocean polynya on the Maud Rise seamount
    Jena, B., M. Ravichandran, and J. Turner, J. ( 2019).  Geophysical Research Letters, 46, 4320– 4329. DOI: 10.1029/2018GL081482
  45. Open-ocean polynyas and deep convection in the Southern Ocean
    Cheon, W.G. and A.L. Gordon (2019). Scientific Reports 9, 6935, 9(1). DOI:10.1038/s41598-019-43466-2
  46. What Fraction of the Pacific and Indian Oceans' Deep Water is formed in the North Atlantic?
    Rae, J. W. B. and W. Broecker (2018).Biogeosciences Discuss. DOI:10.5194/bg-2018-8
  47. Evaluating Southern Ocean Carbon Eddy-Pump From Biogeochemical-Argo Floats
    Joan Llort,, C. Langlais, R. Matear, S. Moreau, A. Lenton, and P. G. Strutton (2017), Journal of Geophysical Research: Oceans,123, 971–984. DOI:10.1002/2017JC012861
  48. Stirring Up the Biological Pump: Vertical Mixing and Carbon Export in the Southern Ocean
    Stukel, M.R. and H.W. Ducklow (2017). Global Biogeochemical Cycles. DOI:10.1002/2017GB005652
  49. Particulate concentration and seasonal dynamics in the mesopelagic ocean based on the backscattering coefficient measured with Biogeochemical-Argo floats
    Poteau, A., E. Boss,, and H. Claustre (2017).  Geophys. Res. Lett., 44. DOI:10.1002/2017GL073949
  50. Substantial energy input to the mesopelagic ecosystem from the seasonal mixed-layer pump
    Dall’Olmo, G., J. Dingle, L. Polimene, R.J.W. Brewin, and H. Claustre (2016). Nature Geoscience, 9, 820–823. DOI:10.1038/NGEO2818