1. Global estimates of particulate organic carbon from the surface ocean to the base of the mesopelagic
    Fox, J.E.,  M. Behrenfeld, K.H. Halsey, et al (2024). Global estimates of particulate organic carbon from the surface ocean to the base of the mesopelagic. ESS Open Archive. DOI: 10.22541/essoar.171017314.40658424/v1

  2. Reviews and syntheses: expanding the global coverage of gross primary production and net community production measurements using Biogeochemical-Argo floats
    Izett, R. W., K. Fennel, A.C. Stoer and D.P. Nicholson (2024). Reviews and syntheses: expanding the global coverage of gross primary production and net community production measurements using Biogeochemical-Argo floats. Biogeosciences, 21, 13–47, DOI:10.5194/bg-21-13-2024

  3. Subantarctic Mode Water biogeochemical formation properties and interannual variability
    Bushinsky, S. M., & Cerovečki, I. (2023). Subantarctic Mode Water biogeochemical formation properties and interannual variability. AGU Advances, 4, e2022AV000722. DOI:10.1029/2022AV000722

  4. Ocean carbon from space: Current status and priorities for the next decade
    Robert J.W. Brewin, Shubha Sathyendranath, Gemma Kulk et al. (2023). Ocean carbon from space: Current status and priorities for the next decade. Earth-Science Reviews,Volume 240, 104386, ISSN 0012-8252. DOI:10.1016/j.earscirev.2023.104386.

  5. Estimating ocean net primary productivity from daily cycles of carbon biomass measured by profiling floats
    Stoer, A.C. and K. Fennel (2023), Estimating ocean net primary productivity from daily cycles of carbon biomass measured by profiling floats. Limnol. Oceanogr. Lett, 8: 368-375. DOI:10.1002/lol2.10295

  6. Operational monitoring of open-ocean carbon dioxide removal deployments: Detection, attribution, and determination of side effects
    Boyd, P.W., H. Claustre, L. Legendre, J.-P. Gattuso, and P.-Y. Le Traon. 2023. Operational monitoring of open-ocean carbon dioxide removal deployments: Detection, attribution, and determination of side effects. In Frontiers in Ocean Observing: Emerging Technologies for Understanding and Managing a Changing Ocean. E.S. Kappel, V. Cullen, M.J. Costello, L. Galgani, C. Gordó-Vilaseca, A. Govindarajan, S. Kouhi, C. Lavin, L. McCartin, J.D. Müller, B. Pirenne, T. Tanhua, Q. Zhao, and S. Zhao, eds, Oceanography 36(Supplement 1):2–10, DOI:10.5670/oceanog.2023.s1.2

  7. Environmental drivers of coccolithophore growth in the Pacific sector of the Southern Ocean
    Oliver, H.,  D.J. McGillicuddy, K.M. Krumhardt, M.C. Long, N.R. Bates, B.C. Bowler, et al. (2023). Environmental drivers of coccolithophore growth in the Pacific sector of the Southern Ocean. Global Biogeochemical Cycles, 37, e2023GB007751. DOI:10.1029/2023GB007751

  8. Evidence of phytoplankton blooms under Antarctic sea ice
    Horvat C., K. Bisson, S. Seabrook, A. Cristi and L.C. Matthes LC (2022). Evidence of phytoplankton blooms under Antarctic sea ice. Front. Mar. Sci. 9:942799. DOI:10.3389/fmars.2022.942799

  9. The relationship between nitrate and potential density in the ocean south of 30°S
    Xu, D., T. Wang, X. Xing & C. Bian (2022). The relationship between nitrate and potential density in the ocean south of 30°S. Journal of Geophysical Research: Oceans, 127, e2022JC018948. DOI:10.1029/2022JC018948

  10. Southern Ocean phytoplankton stimulated by wildfire emissions and sustained by iron recycling 
    Weis, J.,  C. Schallenberg,  Z. Chase, A.R. Bowie, B. Wojtasiewicz, M.M.G. Perron., et al. (2022). Southern Ocean phytoplankton stimulated by wildfire emissions and sustained by iron recycling. Geophysical Research Letters,  49, e2021GL097538. DOI:10.1029/2021GL097538

  11. New estimates of Southern Ocean annual net community production revealed by BGC-Argo floats
    Su, J.,  C. Schallenberg,  T. Rohr, P.G. Strutton, &  H.E. Phillips (2022).  Geophysical Research Letters,  49, e2021GL097372. DOI:10.1029/2021GL097372

  12. Seasonal cycles of phytoplankton and net primary production from biogeochemical argo float data in the south-west Pacific Ocean
    Chiswell, S.M., A. Gutiérrez-Rodríguez, M. Gall, K. Safi, R. Strzepek, M.R. Décima, S.D. Nodder (2022). Deep-Sea Research Part I. DOI:10.1016/j.dsr.2022.103834

  13. Bridging the gaps between particulate backscattering measurements and modeled particulate organic carbon in the ocean
    Galí, M., M. Falls, H. Claustre, O. Aumont and R. Bernardello (2022). Biogeosciences, 19, 1245–1275. DOI:10.5194/bg-19-1245-2022

  14. Argo Float Reveals Biogeochemical Characteristics Along the Freshwater Gradient Off Western Patagonia
    Galán A, Saldías GS, Corredor-Acosta A, Muñoz R, Lara C and Iriarte JL (2021). Front. Mar. Sci. 8:613265. DOI: 10.3389/fmars.2021.613265

  15. How are under ice phytoplankton related to sea ice in the Southern Ocean?
    Bisson, K. M., and B.B. Cael (2021).  Geophysical Research Letters, 48, e2021GL095051. DOI:10.1029/2021GL095051

  16. Evidence of episodic nitrate injections in the oligotrophic North Pacific associated with surface chlorophyll blooms
    Wilson, C. (2021). Journal of Geophysical Research: Oceans, 126, e2021JC017169. DOI:10.1029/2021JC017169 

  17. Linking Southern Ocean Mixed-Layer Dynamics to Net Community Production on Various Timescales
    Li, Z., M.S. Lozier, and N. Cassar (2021). Linking Southern Ocean mixed-layer dynamics to net community production on various timescales. Journal of Geophysical Research: Oceans,  126, e2021JC017537. DOI:10.1029/2021JC017537

  18. Evidence for the Impact of Climate Change on Primary Producers in the Southern Ocean
    Pinkerton, M.H., P.W. Boyd, S. Deppeler, A. Hayward, J. Höfer and S. Moreau (2021). Evidence for the Impact of Climate Change on Primary Producers in the Southern Ocean. Front. Ecol. Evol. 9:592027. DOI:10.3389/fevo.2021.592027

  19. Antarctica and the Southern Ocean [in “State of the Climate in 2020”]
    Stammerjohn, S. and T. Scambos, Eds. (2021). Bull. Amer. Meteor. Soc., 102 (8), S317–S355 DOI:10.1029/2020GL091748

  20. Constraining Southern Ocean CO2 flux uncertainty using uncrewed surface vehicle observations
    Sutton, A.J., N.L.Williams & B. Tilbrook (2021). Geophysical Research Letters, 48, e2020GL091748. DOI:10.1029/2020GL091748

  21. Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires
    Tang, W., J. Llort, J.Weis, et al.( 2021). Nature 597, 370–375 (2021). DOI: 10.1038/s41586-021-03805-8

  22. Particulate backscattering in the global ocean: A comparison of independent assessments
    Bisson, K. M., E. Boss, P.J. Werdell, A. Ibrahim and M.J. Behrenfeld (2021).  Geophysical Research Letters, 48, e2020GL090909. DOI:10.1029/2020GL090909

  23. Observational evidence of ventilation hotspots in the Southern Ocean
    Dove, L. A., A. F. Thompson, D. Balwada, and A.R. Gray (2021). Journal of Geophysical Research: Oceans, 126, e2021JC017178. DOI:10.1029/2021JC017178

  24. The subsurface biological structure of Southern Ocean eddies r evealed by BGC-Argo floats
    Jiaoyang, S., P.G.Strutton, and C.Schallenberg (2021). Journal of Marine Systems, 220. DOI:10.1016/j.jmarsys.2021.103569

  25. Deep Chlorophyll Maxima in the global ocean: occurrences, drivers and characteristics.
    Cornec, M., H. Claustre, A. Mignot, L. Guidi, L. Lacour, A. Poteau, F. D'Ortenzio, B. Gentili, C. Schmechtig (2021).  Global Biogeochemical Cycles, 35, e2020GB006759. DOI:10.1029/2020GB006759

  26. Glacial deep ocean deoxygenation driven by biologically mediated air–sea disequilibrium. 
    Cliff, E., S. Khatiwala & A. Schmittner (2021). Nat. Geosci. 14, 43–50. DOI:10.1038/s41561-020-00667-z

  27. Seasonal carbon dynamics in the near-global ocean
    Keppler, L., Landschützer, P., Gruber, N., Lauvset, S. K., & Stemmler, I. (2020). Global Biogeochemical Cycles, 34, e2020GB006571. DOI:10.1029/2020GB006571

  28. Sea surface kinetic energy as a proxy for phytoplankton light limitation in the summer pelagic Southern Ocean. Gradone, J. M., M. J. Oliver, A. R. Davies, C. Moffat, A. Irwin. (2020). Journal of Geophysical Research: Oceans, 125. e2019JC015646. DOI: 10.1029/2019JC015646

  29. Physical and biological controls of the Drake Passage pCO2 variability
    Jersild, A., & T. Ito (2020). Global Biogeochemical Cycles, 34, e2020GB006644.  DOI: 10.1029/2020GB006644

  30. Effect of Antarctic sea ice on chlorophyll concentration in the Southern Ocean,
    Behera, N., D. Swain, S. Sil (2020). Deep Sea Research Part II: Topical Studies in Oceanography, Volume 178,104853. DOI:10.1016/j.dsr2.2020.104853.

  31. Satellite observations of unprecedented phytoplankton blooms in the Maud Rise polynya, Southern Ocean
    Jena, B. and A.N. Pillai (2020). The Cryosphere, 14, 1385–1398. DOI:10.5194/tc-14-1385-2020

  32. BGC-Argo Detect Under Ice Phytoplankton Growth Before Sea Ice Retreat
    Hague, M. and M. Vichi (2020). Biogeosciences Discuss, in review. DOI:10.5194/bg-2020-257

  33. Remote assessment of the fate of phytoplankton in the Southern Ocean sea-ice zone
    Moreau, S., Boyd, P.W. & Strutton, P.G. (2020). Nat. Commun. 11, 3108. DOI:10.1038/s41467-020-16931-0

  34. Global variability of optical backscattering by non-algal particles from a Biogeochemical-Argo dataset 
    Bellacicco, M., M. Cornec, E. Organelli, R.J.W. Brewin, G. Neukermans, G. Volpe, M. Barbieux, A. Poteau, C. Schmechtig, F. D’Ortenzio, S. Marullo, H. Claustre, and J. Pitarch (2019). Geophysical Research Letters, 46. DOI: 10.1029/2019gl084078

  35. Evaluating satellite estimates of particulate backscatter in the global open ocean using autonomous profiling floats
    Bisson, K.M., E Boss, T.K. Westberry, M J. Behrenfeld (2019). Optics Express, 27. DOI: 10.1364/OE.27.030191

  36. Hydrothermal vents trigger massive phytoplankton blooms in the Southern Ocean
    Ardyna, M., L. Lacour, S. Sergi, F. d’Ovidio, J.-B. Sallée, M. Rembauville, S. Blain, A. Tagliabue, R. Schlitzer, C. Jeandel, K.R. Arrigo & H. Claustre (2019). Nature Communications, 2451,10, 1. DOI:10.1038/s41467-019-09973-6

  37. Biofloat observations of a phytoplankton bloom and carbon export in the Drake Passage
    Davies, A. R., Veron, F., Oliver, M. J. (2019). Deep-Sea Research Part II: | DOI: 10.1016/j.dsr.2019.02.004

  38. Recent reoccurrence of large open‐ocean polynya on the Maud Rise seamount
    Jena, B., M. Ravichandran, and J. Turner, J. ( 2019).  Geophysical Research Letters, 46, 4320– 4329. DOI: 10.1029/2018GL081482

  39. Open-ocean polynyas and deep convection in the Southern Ocean
    Cheon, W.G. and A.L. Gordon (2019). Scientific Reports 9, 6935, 9(1). DOI:10.1038/s41598-019-43466-2

  40. What Fraction of the Pacific and Indian Oceans' Deep Water is formed in the North Atlantic?
    Rae, J. W. B. and W. Broecker (2018).Biogeosciences Discuss. DOI:10.5194/bg-2018-8

  41. Evaluating Southern Ocean Carbon Eddy-Pump From Biogeochemical-Argo Floats
    Joan Llort,, C. Langlais, R. Matear, S. Moreau, A. Lenton, and P. G. Strutton (2017), Journal of Geophysical Research: Oceans,123, 971–984. DOI:10.1002/2017JC012861

  42. Stirring Up the Biological Pump: Vertical Mixing and Carbon Export in the Southern Ocean
    Stukel, M.R. and H.W. Ducklow (2017). Global Biogeochemical Cycles. DOI:10.1002/2017GB005652

  43. Particulate concentration and seasonal dynamics in the mesopelagic ocean based on the backscattering coefficient measured with Biogeochemical-Argo floats
    Poteau, A., E. Boss,, and H. Claustre (2017).  Geophys. Res. Lett., 44. DOI:10.1002/2017GL073949

  44. Substantial energy input to the mesopelagic ecosystem from the seasonal mixed-layer pump
    Dall’Olmo, G., J. Dingle, L. Polimene, R.J.W. Brewin, and H. Claustre (2016). Nature Geoscience, 9, 820–823. DOI:10.1038/NGEO2818