Peer-reviewed publications

SOCCOM authors should acknowledge NSF support - sample text for acknowledging SOCCOM funding and data sources.

2024

  1. Southern Ocean high-resolution (SOhi) modeling along the Antarctic Ice Sheet periphery
    Dinh, A., E. Rignot, M. Mazloff & I. Fenty (2024). Southern Ocean high-resolution (SOhi) modeling along the Antarctic Ice Sheet periphery. Geophysical Research Letters, 51, e2023GL106377. DOI:10.1029/2023GL106377

  2. Seasonality modulates particulate organic carbon dynamics in mid-latitudes of South Pacific and South Atlantic Oceans
    Bif, M.B., J.S. Long, K.S. Johnson (2024). Seasonality modulates particulate organic carbon dynamics in mid-latitudes of South Pacific and South Atlantic Oceans, Journal of Marine Systems, Volume 241, 103916. DOI:10.1016/j.jmarsys.2023.103916

  3. Ross Gyre variability modulates oceanic heat supply toward the West Antarctic continental shelf
    Prend, C.J., G.A. MacGilchrist, G.E. Manucharyan et al. (2024). Ross Gyre variability modulates oceanic heat supply toward the West Antarctic continental shelf. Commun Earth Environ 5, 47.  DOI:10.1038/s43247-024-01207-y

2023

  1. The impacts of optimizing model-dependent parameters on the Antarctic sea ice data assimilation
    Luo, H., Q. Yang, M. Mazloff, L. Nerger & D. Chen (2023). The impacts of optimizing model-dependent parameters on the Antarctic sea ice data assimilation. Geophysical Research Letters, 50, e2023GL105690. DOI:10.1029/2023GL105690

  2. Carbon outgassing in the Antarctic Circumpolar Current is supported by Ekman transport from the sea ice zone in an observation-based seasonal mixed-layer budget
    Sauvé, J., A.R. Gray, C.J. Prend, S.M. Bushinsky & S.C. Riser (2023). Carbon outgassing in the Antarctic Circumpolar Current is supported by Ekman transport from the sea ice zone in an observation-based seasonal mixed-layer budget. Journal of Geophysical Research: Oceans, 128, e2023JC019815. DOI:10.1029/2023JC019815

  3. Spatiotemporal characteristics of the near-surface turbulent cascade at the submesoscale in the Drake Passage
    Tedesco, P. F., L. E. Baker, A. C. Naveira Garabato, M. R. Mazloff, S. T. Gille, C. P. Caulfield, and A. Mashayek (2023). Spatiotemporal characteristics of the near-surface turbulent cascade at the submesoscale in the Drake Passage. J. Phys. Oceanogr. DOI:10.1175/JPO-D-23-0108.1

  4. The impacts of optimizing model-dependent parameters on the Antarctic sea ice data assimilation
    Luo, H.,  Yang, Q.,  Mazloff, M.,  Nerger, L., &  Chen, D. (2023).  The impacts of optimizing model-dependent parameters on the Antarctic sea ice data assimilation. Geophysical Research Letters,  50, e2023GL105690.
    DOI:10.1029/2023GL105690

  5. The Southern Ocean carbon cycle 1985–2018: Mean, seasonal cycle, trends, and storage
    Hauck, J.,  Gregor, L.,  Nissen, C.,  Patara, L.,  Hague, M.,  Mongwe, P., et al. (2023).  The Southern Ocean carbon cycle 1985–2018: Mean, seasonal cycle, trends, and storage. Global Biogeochemical Cycles,  37, e2023GB007848. DOI:10.1029/2023GB007848

  6. The Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project: A review
    Sarmiento, J.L., K.S. Johnson, L.A. Arteaga, S.M. Bushinsky, H.M. Cullen, A.R. Gray, R.M. Hotinski, T.L. Maurer, M.R. Mazloff, S.C. Riser, J.L. Russell, O.M. Schofield, L.D. Talley (2023). The Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project: A review, Progress in Oceanography, 103130. 
    DOI:10.1016/j.pocean.2023.103130.

  7. The Four-Dimensional Carbon Cycle of the Southern Ocean
    Gray, A.R. (2023). Annual Review of Marine Science, 16:1. DOI:10.1146/annurev-marine-041923-104057

  8. The Sensitivity of Southern Ocean Air-Sea Carbon Fluxes to Background Turbulent Diapycnal Mixing Variability
    Ellison, E., A. Mashayek & M. Mazloff (2023). The Sensitivity of Southern Ocean Air-Sea Carbon Fluxes to Background Turbulent Diapycnal Mixing Variability. Journal of Geophysical Research: Oceans, 128, e2023JC019756. DOI:10.1029/2023JC019756

  9. Net community production in the Argentine Basin estimated from nitrate drawdown using biogeochemical Argo floats
    Alkire, M. B. & S. Riser (2023). Net community production in the Argentine Basin estimated from nitrate drawdown using biogeochemical Argo floats. Journal of Geophysical Research: Oceans, 128, e2023JC019858. DOI:10.1029/2023JC019858

  10. Recent trends and variability in the oceanic storage of dissolved inorganic carbon
    Keppler, L., P. Landschützer, S.K. Lauvset, & N. Gruber (2023). Recent trends and variability in the oceanic storage of dissolved inorganic carbon. Global Biogeochemical Cycles, 37, e2022GB007677. DOI:10.1029/2022GB007677

  11. Southern Ocean acidification revealed by biogeochemical-Argo floats
    Mazloff, M. R.,  A. Verdy, S.T. Gille,  K.S. Johnson, B. Cornuelle &  J. Sarmiento (2023). Southern Ocean acidification revealed by biogeochemical-Argo floats. Journal of Geophysical Research: Oceans,  128, e2022JC019530. DOI:10.1029/2022JC019530

  12. Transiting consolidated ice strongly influenced polynya area during a shrink event in Terra Nova Bay in 2013
    Lin, Y., Q. Yang, M. Mazloff. et al., Commun Earth Environ 4, 54 (2023). DOI:10.1038/s43247-023-00712-w

  13. A balanced atmospheric ensemble forcing for sea ice modeling in Southern Ocean
    Luo, H.,  Q. Yang, M. Mazloff & D. Chen (2023).  A balanced atmospheric ensemble forcing for sea ice modeling in Southern Ocean. Geophysical Research Letters, 50, e2022GL101139. DOI:10.1029/2022GL101139
     
  14. Modification of North Atlantic Deep Water by Pacific/Upper Circumpolar Deep Water in the Argentine Basin
    Brand, S.V.S., C.J. Prend, L.D. Talley, L.D. (2023). Modification of North Atlantic Deep Water by Pacific/Upper Circumpolar Deep Water in the Argentine Basin. Geophysical Research Letters, 50, e2022GL099419. DOI:10.1029/2022GL099419.
     
  15. Acoustic float tracking with the Kalman smoother
    Chamberlain, P., B. Cornuelle, L. D. Talley, K. Speer, C. Hancock, and S. Riser (2023). Acoustic float tracking with the Kalman smoother. J. Atm. Oceanic Tech., 40, 15-35.  DOI:10.1175/JTECH-D-21-0063.1

2022

  1. Real-time quality control of optical backscattering data from Biogeochemical-Argo floats
    Dall'Olmo G., T.V.S. U Bhaskar, H.Bittig et al. (2022). Real-time quality control of optical backscattering data from Biogeochemical-Argo floats. Open Res Europe, 2:118. DOI:10.12688/openreseurope.15047.1

  2. Indo-Pacific sector dominates Southern Ocean carbon outgassing
    Prend, C.J., A.R. Gray, L.D. Talley, S.T. Gille, F.A. Haumann, K.S. Johnson, S.C.Riser, I. Rosso, J. Sauve, and J.L. Sarmiento (2022). Indo-Pacific sector dominates Southern Ocean carbon outgassing. Global Biogeochemical Cycles, 36, e2021GB007226. DOI:10.1029/2021GB007226

  3. Carbon to nitrogen uptake ratios observed across the Southern Ocean by the SOCCOM profiling float array
    Johnson, K. S., M.R. Mazloff, M.B. Bif, Y. Takeshita, H.W. Jannasch, T.L. Maurer, T. L., et al. (2022). Carbon to nitrogen uptake ratios observed across the Southern Ocean by the SOCCOM profiling float array. Journal of Geophysical Research: Oceans, 127, e2022JC018859.  DOI:10.1029/2022JC018859

  4. Vertical structure in phytoplankton growth and productivity inferred from Biogeochemical-Argo floats and the Carbon-based Productivity Model
    Arteaga, L. A.,  M.J. Behrenfeld, E. Boss, &  T.K. Westberry (2022). Vertical structure in phytoplankton growth and productivity inferred from Biogeochemical-Argo floats and the Carbon-based Productivity Model. Global Biogeochemical Cycles,  36, e2022GB007389. DOI:10.1029/2022GB007389

  5. Impact of downward longwave radiative deficits on Antarctic sea-ice extent predictability during the sea ice growth period
    Cerovecki, I., R. Sun, D.H. Bromwich, X. Zou, M.R. Mazloff & S.H. Wang (2022). Impact of downward longwave radiative deficits on Antarctic sea-ice extent predictability during the sea ice growth period. Environ. Res. Lett., 17, 084008. DOI:10.1088/1748-9326/ac7d66

  6. The deep ocean's carbon exhaust
    Chen, H., F.A. Haumann, L.D. Talley, K.S. Johnson, J. Sarmiento (2022). The deep ocean's carbon exhaust. Global Biogeochemical Cycles, 36. DOI:10.1029/2021GB007156 

  7. Sub-seasonal forcing drives year-to-year variations of Southern Ocean primary productivity
    Prend, C.J., M.G. Keerthi, M. Lévy, O. Aumont, S.T. Gille and L.D. Talley (2022). Sub-seasonal forcing drives year-to-year variations of Southern Ocean primary productivity. Global Biogeochemical Cycles. 36  (7). DOI:10.1029/2022GB007329

  8. Importance of the Antarctic Slope Current in the Southern Ocean response to ice sheet melt and wind stress change
    Beadling, R. L., J.P. Krasting, S.M. Griffies, W.J. Hurlin, B. Bronselaer, J.L. Russell et al. (2022).  Importance of the Antarctic Slope Current in the Southern Ocean response to ice sheet melt and wind stress change. Journal of Geophysical Research: Oceans, 127, e2021JC017608. DOI:10.1029/2021JC017608

  9. Trophic level decoupling drives future changes in phytoplankton bloom phenology
    Yamaguchi, R., K.B. Rodgers, A. Timmermann et al. (2022). Trophic level decoupling drives future changes in phytoplankton bloom phenology. Nat. Clim. Chang. 12, 469–476. DOI:10.1038/s41558-022-01353-1

  10. Attribution of space-time variability in global-ocean dissolved inorganic carbon
    Carroll, D., D. Menemenlis, S. Dutkiewicz, J.M. Lauderdale, J.F. Adkins, K.W. Bowman et al. (2022). Attribution of space-time variability in global-ocean dissolved inorganic carbon. Global Biogeochemical Cycles, 36, e2021GB007162. DOI: 10.1029/2021GB007162

  11. Subtropical contribution to Sub-Antarctic Mode Waters
    Castro, B. F., M. Mazloff, R.G. Williams & A.C. Naveira Garabato (2022). Subtropical contribution to Sub-Antarctic Mode Waters. Geophysical Research Letters, 49, e2021GL097560. DOI: 10.1029/2021GL097560

  12. Tracer and observationally derived constraints on diapycnal diffusivities in an ocean state estimate
    Trossman, D. S., C.B. Whalen, T.W.N. Haine, A.F. Waterhouse, A.T. Nguyen, A.Bigdeli, M. Mazloff and P. Heimbach (2022). Tracer and observationally derived constraints on diapycnal diffusivities in an ocean state estimate. Ocean Sci., 18, 729–759.  DOI: 10.5194/os-18-729-2022

  13. Controls on the boundary between thermally and non-thermally driven pCO2 regimes in the South Pacific
    Prend, C.J., J.M. Hunt, M.R. Mazloff, S.T. Gille, and L.D. Talley (2022). Controls on the boundary between thermally and non-thermally driven pCO2 regimes in the South Pacific. Geophys. Res. Lett., DOI: 10.1029/2021GL095797

  14. Freshwater input and vertical mixing in the Canada Basin's seasonal halocline: 1975 versus 2006-2012
    Rosenblum, E., J. Stroeve, S.T. Gille, L B. Tremblay, C. Lique, R. Fajber, R. Galley, D.G. Barber, T. Loureiro, and J.V. Lukovich (2022). Freshwater input and vertical mixing in the Canada Basin's seasonal halocline: 1975 versus 2006-2012. J. Phys. Oceanogr., DOI:10.1175/JPO-D-21-0116.1

2021

  1. Surface salinity under transitioning ice cover in the Canada Basin: Climate model biases linked to vertical distribution of fresh water
    Rosenblum, E., R. Fajber, J.C. Stroeve, S.T Gille, L.B. Tremblay & E.C. Carmack (2021). Surface salinity under transitioning ice cover in the Canada Basin: Climate model biases linked to vertical distribution of fresh water. Geophysical Research Letters, 48, e2021GL094739. DOI:10.1029/2021GL094739

  2. The Role of Continental Topography in the Present-Day Ocean’s Mean Climate
    Stouffer, R.J., J.L. Russell, R.L. Beadling, A.J. Broccoli, J.P. Krasting, S. Malyshev and Z. Naiman (2021). The Role of Continental Topography in the Present-Day Ocean’s Mean Climate. J. Climate.  DOI:10.1175/JCLI-D-20-0690.1

  3. Ocean warming and accelerating Southern Ocean zonal flow
    Shi, JR., L.D.Talley, S.P. Xie, Q. Peng and W. Liu  (2021). Ocean warming and accelerating Southern Ocean zonal flow. Nat. Clim. Chang. DOI:10.1038/s41558-021-01212-5

  4. Seasonal Modulation of Dissolved Oxygen in the Equatorial Pacific by Tropical Instability Vortices
    Eddebbar, Y. A., A.C. Subramanian, D.B, Whitt, M.C. Long, A. Verdy, M.R. Mazloff & M.A. Merrifield (2021). Seasonal Modulation of Dissolved Oxygen in the Equatorial Pacific by Tropical Instability Vortices. Journal of Geophysical Research: Oceans, 126, e2021JC017567. DOI:
    10.1029/2021JC017567

  5. Southern Ocean [in "State of the Climate in 2020"]
    Tamsitt, V., S. Bushinsky, Z. Li, M. du Plessis, A. Foppert, S. Gille, S. Rintoul, E. Shadwick, A. Silvano, A. Sutton, S. Swart, B. Tilbrook, and N. L. Williams, 2021. Southern Ocean [in "State of the Climate in 2020"]. Bull. Amer. Meteor. Soc., 102 (8), S341-S345, DOI:10.1175/BAMS-D-21-0081.1

  6. Investigating predictability of DIC and SST in the Argentine Basin through wind stress perturbation experiments
    Swierczek, S., M.R. Mazloff & J.L. Russell (2021). Investigating predictability of DIC and SST in the Argentine Basin through wind stress perturbation experiments. Geophysical Research Letters, 48, e2021GL095504. DOI:10.1029/2021GL095504

  7. Constraint on net primary productivity of the global ocean by Argo oxygen measurements
    Johnson, K.S. and M.B. Bif (2021). Constraint on net primary productivity of the global ocean by Argo oxygen measurements. Nature Geoscience. DOI:10.1038/s41561-021-00807-z

  8. Demons in the North Atlantic: Variability of deep ocean ventilation
    MacGilchrist, G. A., H.L. Johnson, C. Lique, C & D.P. Marshall (2021).  Demons in the North Atlantic: Variability of deep ocean ventilation. Geophysical Research Letters, 48, e2020GL092340. DOI:10.1029/2020GL092340

  9. Untangling local and remote influences in two major petrel habitats in the oligotrophic Southern Ocean
    Jones, D. C., F.R. Ceia, E. Murphy, K. Delord, R.W. Furness, A. Verdy, M. Mazloff, R.A. Phillips, P.M. Sagar, J.-B. Sallée, B. Schreiber,D.R. Thompson, L.G. Torres, P.J. Underwood, H. Weimerskirch, and J.C. Xavier (2021). Untangling local and remote influences in two major petrel habitats in the oligotrophic Southern Ocean. Global Change Biology, 27, 5773– 5785. DOI:10.1111/gcb.15839

  10. Delayed-Mode Quality Control of Oxygen, Nitrate, and pH Data on SOCCOM Biogeochemical Profiling Floats
    Maurer, T.L., J.N. Plant and K.S. Johnson (2021). Delayed-Mode Quality Control of Oxygen, Nitrate, and pH Data on SOCCOM Biogeochemical Profiling Floats. Front. Mar. Sci. 8:683207. DOI: 10.3389/fmars.2021.683207

  11. The impact of Southern Ocean Ekman pumping, heat and freshwater flux variability on intermediate and mode water export in CMIP models: Present and future scenarios
    Almeida, L., M.R. Mazloff and M.M. Mata (2021). The impact of Southern Ocean Ekman pumping, heat and freshwater flux variability on intermediate and mode water export in CMIP models: Present and future scenarios. Journal of Geophysical Research: Oceans, 126, e2021JC017173. DOI:10.1029/2021JC017173

  12. The effect of resolution on vertical heat and carbon transports in a regional ocean circulation model of the Argentine Basin
    Swierczek, S., M.R. Mazloff, M. Morzfeld, M., and J.L. Russell (2021). The effect of resolution on vertical heat and carbon transports in a regional ocean circulation model of the Argentine Basin.  Journal of Geophysical Research: Oceans, 126, e2021JC017235. DOI:10.1029/2021JC017235

  13. Seasonal Prediction and Predictability of Regional Antarctic Sea Ice
    Bushuk, M., M. Winton, F.A. Haumann, T. Delworth, F. Lu, Y. Zhang, L. Jia, L. Zhang,  W. Cooke, M. Harrison, B. Hurlin, N.C. Johnson, S.B. Kapnick, C, McHugh, H. Murakami, A. Rosati, K.Tseng, A.T. Wittenberg, X.Yang, & F. Zeng (2021). Seasonal Prediction and Predictability of Regional Antarctic Sea Ice. J. Climate, 34(15), 6207-6233, DOI:10.1175/JCLI-D-20-0965.1

  14. Quantifying errors in observationally‐based estimates of ocean carbon sink variability
    Gloege, L., G.A. McKinley, P. Landschützer, A.R, Fay, T.L. Frölicher, J.C., Fyfe, T. Ilyina, T., S. Jones, N.S. Lovenduski, K.B. Rodgers, S. Schlunegger and Y. Takano (2021). Quantifying errors in observationally‐based estimates of ocean carbon sink variability. Global Biogeochemical Cycles, 35, e2020GB006788. DOI:10.1029/2020GB006788

  15. Time-varying empirical probability densities of Southern Ocean surface winds: Linking the Leading mode to SAM, and Quantifying Wind Product Differences
    Hell, M. C., B. D. Cornuelle, S. T. Gille, and N. J. Lutsko, (2021). Time-varying empirical probability densities of Southern Ocean surface winds: Linking the Leading mode to SAM, and Quantifying Wind Product Differences. J. Climate, 34(13), 5497–5522 DOI: 10.1175/JCLI-D-20-0629.1

  16. On the role of the Antarctic Slope Front on the occurrence of the Weddell Sea polynya under climate change
    Lockwood, J. W., C. O. Dufour, S. M. Griffies, and M. Winton (2021). On the role of the Antarctic Slope Front on the occurrence of the Weddell Sea polynya under climate change. J. Climate,  1-56, DOI:10.1175/JCLI-D-20-0069.1

  17. Evaluation of sea-ice thickness from four reanalyses in the Antarctic Weddell Sea
    Shi, Q., Q. Yang, L. Mu, J. Wang, F. Massonnet and M.R. Mazloff (2021). Evaluation of sea-ice thickness from four reanalyses in the Antarctic Weddell Sea. The Cryosphere, 15, 31–47, DOI:10.5194/tc-15-31-2021

  18. Mixing in the Southern Ocean
    Gille, S. T, K. L. Sheen, S. Swart, and A. F. Thompson (2021). Mixing in the Southern Ocean. In M. Meredith and A. Naveira Garabato (eds.) Ocean Mixing: Drivers, Mechanisms and Impacts, Elsevier.

2020

  1. Resolving and Parameterising the Ocean Mesoscale in Earth System Models
    Hewitt, H.T., M. Roberts,P. Mathiot, et al. (2020). Resolving and Parameterising the Ocean Mesoscale in Earth System Models. Curr Clim Change Rep 6, 137–152.  DOI:10.1007/s40641-020-00164-w

  2. ESMValTool (v2.0) – Part 2: an extended set of large-scale diagnostics for quasi-operational and comprehensive evaluation of Earth system models in CMIP6
    Eyring, V., L. Bock, A. Lauer, M. Righi, M. Schlund, B. Andela, E. Arnone, … J.L. Russell, … and K. Zimmermann (2020). SMValTool (v2.0) – Part 2: an extended set of large-scale diagnostics for quasi-operational and comprehensive evaluation of Earth system models in CMIP6. Geoscientific Model Development, 13, 3383–3438.  DOI:10.5194/gmd-2019-291

  3. Variability of the Oceans
    Yu, J.-Y., E. Campos, Y. Du, T. Eldevik, S. T. Gille, T. Losada, M. J. McPhaden, and L. H. Semdsrud, (2020). Variability of the Oceans. In C. R. Mechoso (ed.) Interacting Climates of Ocean Basins, Cambridge University Press. ISBN:9781108492706

  4. The large-scale vorticity balance of the Antarctic continental margin in a fine-resolution global simulation
    Palóczy, A., J. L. McClean, S. T. Gille, and H. Wang, (2020). The large-scale vorticity balance of the Antarctic continental margin in a fine-resolution global simulation. J. Phys. Oceanogr., 50, 2173-2188, DOI:10.1175/JPO-D-19-0307.1

  5. Optimizing mooring placement to constrain Southern Ocean air-sea fluxes
    Wei, Y., S. T. Gille, M. R. Mazloff, V. Tamsitt, S. Swart, D. Chen, and L. Newman, (2020).
    Optimizing mooring placement to constrain Southern Ocean air-sea fluxes. J. Atmos. Ocean. Tech., 37, 1365-1385, DOI:10.1175/JTECH-D-19-0203.1

  6. Mooring Observations of Air–Sea Heat Fluxes in Two Subantarctic Mode Water Formation Regions
    Tamsitt, V., I. Cerovečki, S. A. Josey, S. T. Gille, and E. Schulz, (2020). Mooring Observations of Air–Sea Heat Fluxes in Two Subantarctic Mode Water Formation Regions. J. Climate, 33, 2757-2777, DOI:10.1175/JCLI-D-19-0653.1

  7. Estimating Southern Ocean storm positions with seismic observations
    Hell, M. C., S. T. Gille, B. D. Cornuelle, A. J. Miller, P. D. Bromirski, and A. D. Crawford, (2020).
    Estimating Southern Ocean storm positions with seismic observations. J. Geophys. Res - Oceans., 125, e2019JC015898, DOI:10.1029/2019JC015898

  8. FluxSat: Measuring the ocean-atmosphere turbulent exchange of heat and moisture from space
    Gentemann, C., C. A. Clayson, S. Brown, T. Lee, R. Parfitt, J. T. Farrar, M. Bourassa, P. J. Minnett, H. Seo, S. T. Gille, and V. Zlotnicki, (2020). FluxSat: Measuring the ocean-atmosphere turbulent exchange of heat and moisture from space. Remote Sensing, 12, 1796, DOI:10.3390/rs12111796

  9. Self‐shading and meltwater spreading control the transition from light to iron limitation in an Antarctic coastal polynya
    Twelves, A. G., D.N. Goldberg, S.F. Henley, M.R. Mazloff & D.C. Jones (2020). Self‐shading and meltwater spreading control the transition from light to iron limitation in an Antarctic coastal polynya. Journal of Geophysical Research: Oceans, 125, e2020JC016636. DOI:10.1029/2020JC016636

  10. Recent recovery of Antarctic Bottom Water formation in the Ross Sea driven by climate anomalies
    Silvano, A., A. Foppert, S.R. Rintoul et al. (2020). Recent recovery of Antarctic Bottom Water formation in the Ross Sea driven by climate anomalies . Nat. Geosci. DOI: 10.1038/s41561-020-00655-3

  11. Seasonal modulation of phytoplankton biomass in the Southern Ocean
    Arteaga, L.A., E. Boss, M.J. Behrenfeld et al. (2020). Seasonal modulation of phytoplankton biomass in the Southern Ocean. Nat Commun 11, 5364. DOI: 10.1038/s41467-020-19157-2

  12. Eddy‐induced acceleration of Argo floats
    Wang, T., S.T. Gille, M.R. Mazloff, N.V. Zilberman, & Y. Du (2020). Eddy‐induced acceleration of Argo floats. Journal of Geophysical Research: Oceans, 125, e2019JC016042. DOI: 10.1029/2019JC016042

  13. Supercooled Southern Ocean Water
    Haumann, F.A., R. Moorman, S. Riser, L. H. Smedsrud, T. Maksym, A. P. S. Wong, E. A. Wilson, R. Drucker. L. D. Talley, K. S. Johnson, R. M. Key, J. L. Sarmiento (2020).  Supercooled Southern Ocean Water. Geophysical Research Letters, 47, e2020GL090242. DOI:10.1029/2020GL090242

  14. Time of Emergence and Large Ensemble Intercomparison for Ocean Biogeochemical Trends
    Schlunegger, S., K.B. Rodgers, J.L. Sarmiento, T. Ilyina, J.P. Dunne, Y. Takano, J.R. Christian, M.C. Long, T.L. Frölicher, R. Slater and F. Lehner (2020). Time of Emergence and Large Ensemble Intercomparison for Ocean Biogeochemical Trends. Global Biogeochem. Cycles, 34: e2019GB006453. DOI:10.1029/2019GB006453

  15. Detecting mesopelagic organisms using biogeochemical‐Argo floats
    Haëntjens, N., A. Della Penna, N. Briggs, L. Karp‐Boss, P. Gaube, H. Claustre & E. Boss (2020).  Detecting mesopelagic organisms using biogeochemical‐Argo floats. Geophysical Research Letters, 47, e2019GL086088. DOI:10.1029/2019GL086088

  16. Southern Ocean carbon export efficiency in relation to temperature and primary productivity
    Fan, G., Z. Han, W. Ma, S. Chen, F. Chai, M.R. Mazloff, J. Pan, and H. Zhang (2020). Southern Ocean carbon export efficiency in relation to temperature and primary productivity. Sci Rep 10, 13494. DOI: 10.1038/s41598-020-70417-z

  17. Biogeochemical Argo [in “State of the Climate in 2019"]
    Johnson, K.S., M.B. Bif, S.M. Bushinsky, A.J. Fassbender, and Y. Takeshita (2020). Biogeochemical Argo [in “State of the Climate in 2019"]. Bull. Amer. Meteor. Soc., 101 (8), S167–S169. DOI:10.1175/BAMS-D-20-0105.1

  18. Southern Ocean [in “State of the Climate in 2019”]
    Queste, B. Y., E. P. Abrahamsen, M. D. du Plessis, S. T. Gille, L. Gregor, M. R. Mazloff, A. Narayanan, F. Roquet, and S. Swart (2020). Southern Ocean [in “State of the Climate in 2019”]. Bull. Amer. Meteor. Soc., 101 (8), S307–S309. DOI: 10.1175/BAMS-D-20-0090.1

  19. Effects of Buoyancy and Wind Forcing on Southern Ocean Climate Change
    Shi, J.-R, L.D. Talley, S.-P. Xie, W. Liu, S.T. Gille (2020). Effects of Buoyancy and Wind Forcing on Southern Ocean Climate Change. J. Climate, 33(23), 10003-10020. DOI:10.1175/JCLI-D-19-0877.1

  20. Monitoring ocean biogeochemistry with autonomous platforms
    Chai, F., K.S. Johnson, H. Claustre et al. (2020). Monitoring ocean biogeochemistry with autonomous platforms. Nat Rev Earth Environ.  DOI: 10.1038/s43017-020-0053-y

  21. Representation of Southern Ocean properties across Coupled Model Intercomparison Project generations: CMIP3 to CMIP6
    Beadling, R.L., J.L. Russell, R.J. Stouffer, M. Mazloff, L.D. Talley, P.J. Goodman, J.B. Sallée, H.T. Hewitt, P. Hyder, and A. Pandde (2020). Representation of Southern Ocean properties across Coupled Model Intercomparison Project generations: CMIP3 to CMIP6. J. Climate, 33(15), 6555–6581. DOI: 10.1175/JCLI-D-19-0970.1

  22. Impacts of ice-shelf melting on water mass transformation in the Southern Ocean from E3SM simulations
    Jeong, H., X.S. Asay-Davis, A.K. Turner, D.S. Comeau, S.F. Price, R.P. Abernathey, M. Veneziani, M.R. Petersen, M.J. Hoffman, M.R. Mazloff, and T.D. Ringler (2020).  Impacts of ice-shelf melting on water mass transformation in the Southern Ocean from E3SM simulations. J. Climate, 33(13), 5787–5807..  DOI:10.1175/JCLI-D-19-0683.1

  23. Weddell Sea phytoplankton blooms modulated by sea ice variability and polynya formation
    von Berg, L., C. J. Prend, E. C. Campbell, M. R. Mazloff, L. D. Talley, and S. T. Gille (2020). Weddell Sea phytoplankton blooms modulated by sea ice variability and polynya formation. Geophysical Research Letters, 47, e2020GL087954. DOI:10.1029/2020GL087954

  24. Sea‐ice induced Southern Ocean subsurface warming and surface cooling in a warming climate
    Haumann, F. A.,  N. Gruber, & M. Münnich (2020). Sea‐ice induced Southern Ocean subsurface warming and surface cooling in a warming climate. AGU Advances, 1, e2019AV000132. DOI:10.1029/2019AV000132

  25. Water mass and biogeochemical variability in the Kerguelen sector of the Southern Ocean: A machine learning approach for a mixing hot spot
    Rosso, I., M. R. Mazloff, L.D. Talley, S.G. Purkey, N.M. Freeman & G. Maze ( 2020). Water mass and biogeochemical variability in the Kerguelen sector of the Southern Ocean: A machine learning approach for a mixing hot spot. Journal of Geophysical Research: Oceans, 125, e2019JC015877. DOI:10.1029/2019JC015877

  26. Using a regional ocean model to understand the structure and variability of acoustic arrivals in Fram Strait
    Geyer, F., H. Sagen, B. Cornuelle, M.R. Mazloff, and H.J. Vazquez (2020). Using a regional ocean model to understand the structure and variability of acoustic arrivals in Fram Strait. The Journal of the Acoustical Society of America 147, 1042. DOI: 10.1121/10.0000513

  27. The Importance of Remote Forcing for Regional Modeling of Internal Waves
    Mazloff, M. R., B. Cornuelle, S.T. Gille & J. Wang ( 2020). The Importance of Remote Forcing for Regional Modeling of Internal Waves. Journal of Geophysical Research: Oceans, 125. DOI:10.1029/2019JC015623

  28. Observing the Global Ocean with Biogeochemical-Argo
    Claustre, H., K.S. Johnson, Y. Takeshita (2020).  Observing the Global Ocean with Biogeochemical-Argo. Annual Review of Marine Science 12:1, 23-48. DOI:10.1146/annurev-marine-010419-010956

  29. Importance of wind and meltwater for observed chemical and physical changes in the Southern Ocean
    Bronselaer, B., Russell, J.L., Winton, M. et al. (2020). Importance of wind and meltwater for observed chemical and physical changes in the Southern Ocean. Nat. Geosci. 13, 35–42. DOI: 10.1038/s41561-019-0502-8

2019

  1. Taking climate model evaluation to the next level
    Eyring, V., P. Cox, G. Flato, P. Gleckler, G. Abramowitz, P. Caldwell, W. Collins, B. Gier, A. Hall, F. Hoffman, G. Hurtt, A. Jahn, C. Jones, S. Klein, J. Krasting, L. Kwiatkowski, R. Lorenz, E. Maloney, G. Meehl, A. Pendergrass, R. Pincus, A. Ruane, J.L. Russell, B. Sanderson, B. Santer, S. Sherwood, I. Simpson, R. Stouffer and M. Williamson (2019). Taking climate model evaluation to the next level. Nature Climate Change, 9, 102–110. DOI: 10.1038/s41558-018-0355-y  

  2. Assessing the quality of Southern Ocean circulation in CMIP5 AOGCM and Earth System Model simulations
    Beadling, R.L., J.L. Russell, R.J. Stouffer, P.J. Goodman and M. Mazloff (2019).  Assessing the quality of Southern Ocean circulation in CMIP5 AOGCM and Earth System Model simulations. J. Climate, 32, 5915-5940.  DOI:10.1175/JCLI-D-19-0263.1

  3. Current Systems in the Southern Ocean
    Gille, S. T., and A. L. Gordon (2019). Current Systems in the Southern Ocean. In J. K. Cochran, J. H. Bokuniewicz, and L. P. Yager (eds.) Encyclopedia of Ocean Sciences, 3rd Edition, vol.[3], pp. 228-235. Oxford: Elsevier.

  4. Reassessing Southern Ocean air‐sea CO2 flux estimates with the addition of biogeochemical float observations
    Bushinsky, S. M., P. Landschützer, C. Rödenbeck, A.R. Gray, D. Baker, M.R. Mazloff et al. (2019).  Reassessing Southern Ocean air‐sea CO2 flux estimates with the addition of biogeochemical float observations. Global Biogeochemical Cycles, 33, 1370– 1388. DOI:10.1029/2019GB006176

  5. Temporal and Spatial Scales of Correlation in Marine Phytoplankton Communities
    Kuhn, A. M., S. Dutkiewicz, O. Jahn, S. Clayton, T.A. Rynearson, M.R. Mazloff, & A.D. Barton (2019). Temporal and spatial scales of correlation in marine phytoplankton communities. Temporal and Spatial Scales of Correlation in Marine Phytoplankton Communities. Journal of Geophysical Research: Oceans, 124, 9417– 9438. DOI:10.1029/2019JC015331

  6. Identifying ocean swell generation events from Ross Ice Shelf seismic data
    Hell, M. C., B. D. Cornuelle, S. T. Gille, A. J. Miller, and P. D. Bromirski (2019). Identifying ocean swell generation events from Ross Ice Shelf seismic data. J. Atmos. Ocean. Tech., 36, 2171-2189, DOI:10.1175/JTECH-D-19-0093.1

  7. Water mass characteristics of the Antarctic margins and the production and seasonality of Dense Shelf Water
    Narayanan, A., S. T. Gille, M. R. Mazloff, K. Murali (2019). Water mass characteristics of the Antarctic margins and the production and seasonality of Dense Shelf Water. J. Geophys. Res. - Oceans, 124, 9277– 9294. DOI:10.1029/2018JC014907

  8. A BGC-Argo Guide: Planning, Deployment, Data Handling and Usage
    Bittig H.C., T. L. Maurer, J.N. Plant, C. Schmechtig, A.P.S. Wong, H. Claustre, T.W. Trull, T.V.S.U. Bhaskar, E. Boss, G. Dall’Olmo, E. Organelli, A. Poteau, K.S. Johnson, C. Hanstein, E. Leymarie, S. Le Reste, S.C. Riser, R.A. Rupan, V. Taillandier, V. Thierry, X. Xing (2019). A BGC-Argo Guide: Planning, Deployment, Data Handling and Usage. Frontiers in Marine Science, 6, p. 502. DOI:10.3389/fmars.2019.00502   

  9. On the Future of Argo: A Global, Full-Depth, Multi-Disciplinary Arrayw
    Roemmich, D., M.H. Alford, H. Claustre, K. johnson, B. King, J. Moum, P. Oke, W.B. Owens, S. Pouliquen, S.Purkey, M. Scanderbeg, T. Suga, S. Wijffels, N. Zilberman, D. Bakker, M. Baringer, M. Belbeoch, H.C. Bittig, E. Boss, P. Calil, F. Carse, T. Carval, F. Chai, D.O. Conchubhair, F. d’Ortenzio, G. Dall’Olmo, D. Desbruyeres, K. Fennel, I. Fer, R. Ferrari, G. Forget, H. Freeland, T. Fujiki, M. Gehlen, B. Greenan, R. Hallberg, T. Hibiya, S. Hosoda, S. Jayne, M. Jochum, G. C. Johnson, K. Kang, N. Kolodziejczyk, A. Körtzinger, P.-Y. Le Traon, Y.-D. Lenn, G. Maze, K.A. Mork, T. Morris, T. Nagai, J. Nash, A. Naveira Garabato, A. Olsen, R.R. Pattabhi, S. Prakash, S. Riser, C. Schmechtig, C. Schmid, E. Shroyer, A. Sterl, P. Sutton, L. Talley, T. Tanhua, V. Thierry, S. Thomalla, J. Toole, A. Troisi, T.W. Trull, J. Turton, P.J. Velez-Belchi, W. Walczowski, H. Wang, R. Wanninkhof, A.F. Waterhouse, S. Waterman, A. Watson, C. Wilson, A.P.S. Wong, J. Xu and I. Yasuda (2019). On the Future of Argo: A Global, Full-Depth, Multi-Disciplinary Array. Front. Mar. Sci., 6:439. DOI: 10.3389/fmars.2019.00439

  10. The Global Ocean Ship-Based Hydrographic Investigations Program (GO-SHIP): A Platform for Integrated Multidisciplinary Ocean Science
    Sloyan B.M., R. Wanninkhof, M. Kramp, G.C. Johnson, L.D. Talley, T. Tanhua, E. McDonagh, C. Cusack, E. O’Rourke, E. McGovern, K. Katsumata, S. Diggs, J. Hummon, M. Ishii, K. Azetsu-Scott, E. Boss, I. Ansorge, F.F. Perez, H. Mercier, M.J.M. Williams, L.Anderson, J.H. Lee, A. Murata, S. Kouketsu, E. Jeansson, M. Hoppema and E. Campos (2019). The Global Ocean Ship-Based Hydrographic Investigations Program (GO-SHIP): A Platform for Integrated Multidisciplinary Ocean Science. Front. Mar. Sci., 6:445. DOI:10.3389/fmars.2019.00445

  11. Fe sources and transport from the Antarctic Peninsula shelf to the southern Scotia Sea
    Jiang, M., C. I. Measures, K. A. Barbeau, M. A. Charette, S. T. Gille, M. Hatta, M. Kahru, B. G. Mitchell, A. C. Naveira Garabato, C. Reiss, K. Selph, and M. Zhou, 2019. Fe sources and transport from the Antarctic Peninsula shelf to the southern Scotia Sea. Deep-Sea Research I, 150, 103060, DOI:10.1016/j.dsr.2019.06.006. 

  12. Constraining Southern Ocean air-sea-ice fluxes through enhanced observations
    Swart, S., S. T. Gille, B. Delille, S. Josey, M. Mazloff, L. Newman, A. F. Thompson, J. Thomson, B. Ward, M. D. Du Plessis, E. C. Kent, J. Girton, L. Gregor, Petra H, P. Hyder, L. Ponzi Pezzi, R. Buss De Souza, V. Tamsitt, R. A. Weller, and C. J. Zappa, 2019. Constraining Southern Ocean air-sea-ice fluxes through enhanced observations. Frontiers in Marine Science, 6, 421, DOI:10.3389/fmars.2019.00421

  13. Polar Ocean Observations: A Critical Gap in the Observing System and its effect on Environmental Prediction
    Smith, G. C., R. Allard, M. Babin, L. Bertino, M. Chevallier, G. K. Corlett, J. Crout, F. Davidson, B. Delille, S. T. Gille, D. Hebert, P. Hyder, J. Intrieri, J. Lagunas, G. Larnicol, T. Kaminski, B. J. Kater, F. Kauker, C. Marec, M. Mazloff, E. J. Metzger, C. Mordy, A. G. O'Carroll, S. M. Olsen, M. Phelps, P. Posey, P. Prandi, E. Rehm, P. Reid, I. Rigor, S. Sandven, S. Swart, O. M. Smedstad, A. Solomon, A. Storto, P. Thibaut, J. Toole, K. Wood, J. Xie, Q. Yang, WWRP-PPP Steering Group, (2019). Polar Ocean Observations: A Critical Gap in the Observing System and its effect on Environmental Prediction. Frontiers in Marine Science, 6, 429, DOI:10.3389/fmars.2019.0042

  14. Physical drivers of phytoplankton bloom initiation in the Southern Ocean’s Scotia Sea
    Prend, C. J., S. T. Gille, L. D. Talley, B. G. Mitchell, I. Rosso, and M. R. Mazloff (2019).  Physical drivers of phytoplankton bloom initiation in the Southern Ocean’s Scotia Sea. Journal of Geophysical Research: Oceans, 124, 5811-5826. DOI:10.1029/2019JC015162

  15. Southern Ocean phytoplankton blooms observed by biogeochemical floats
    Uchida, T., D. Balwada, R. P. Abernathey, C. J. Prend, E. Boss, and S. T. Gille (2019). Southern Ocean phytoplankton blooms observed by biogeochemical floats. Journal of Geophysical Research: Oceans, 124. DOI:10.1029/2019JC015355

  16. Southern Ocean [in “State of the Climate in 2018”]
    Meijers, A. J., B. Sallée, A. Grey, K. Johnson, K. Arrigo, S. Swart, B. King, and M. Mazloff (2019).   Southern Ocean [in “State of the Climate in 2018”]. Bull. Amer. Meteor. Soc., 100 (9), S181–S185. DOI:10.1175/2019BAMSStateoftheClimate.1.

  17. Nutrient controls on export production in the Southern Ocean
    Arteaga, L. A., M. Pahlow, S.M. Bushinsky & J.L. Sarmiento (2019). Nutrient controls on export production in the Southern Ocean. Global Biogeochemical Cycles, 33.  DOI:10.1029/2019GB006236

  18. Antarctic offshore polynyas linked to Southern Hemisphere climate anomalies
    Campbell, E.C., E.A. Wilson, G.W.K.Moore, S.C. Riser, C.E. Brayton, M.R. Mazloff, L.D. Talley, (2019). Antarctic offshore polynyas linked to Southern Hemisphere climate anomalies. Nature, 570, 319–325.  DOI:10.1038/s41586-019-1294-0

  19. Insights from GO-SHIP hydrography data into the thermodynamic consistency of CO2 system measurements in seawater
    Fong, M.B. and A.G. Dickson (2019). Insights from GO-SHIP hydrography data into the thermodynamic consistency of CO2 system measurements in seawater. Marine Chemistry, 211, 52-63. DOI: 10.1016/j.marchem.2019.03.006.

  20. The Weddell Gyre, Southern Ocean: present knowledge and future challenges
    Jokat, W., L. Jullion, M. Mazloff, D.C.E. Bakker, J.A. Brearley, P. Croot. T. Hattermann, J. Hauck, C.‐D. Hillenbrand, C.J.M. Hoppe, O. Huhn, B.P. Koch, O.J. Lechtenfeld, M.P. Meredith. A.C. Naveira Garabato, E.‐M. Nöthig, I. Peeken, M.M. Rutgers van der Loeff, S. Schmidtko, M. Schröder, V.H. Strass, S. Torres‐Valdés, A. Verdy (2019). The Weddell Gyre, Southern Ocean: present knowledge and future challenges. Reviews of Geophysics, 57. DOI: 10.1029/2018RG000604

  21. The observed seasonal cycle of macronutrients in Drake Passage: relationship to fronts and utility as a model metric
    Freeman, N.M., D.R. Munro, J. Sprintall, M.R. Mazloff, S. Purkey, I. Rosso, C.A. DeRanek, C. Sweeney (2019). The observed seasonal cycle of macronutrients in Drake Passage: relationship to fronts and utility as a model metric. Journal of Geophysical Research: Oceans, 124DOI:10.1029/2019JC015052

  22. Observing Changes in Ocean Carbonate Chemistry: Our Autonomous Future
    Bushinsky, S.M., Y. Takeshita & N.L. Williams (2019). Observing Changes in Ocean Carbonate Chemistry: Our Autonomous Future. Curr Clim Change Rep. DOI:10.1007/s40641-019-00129-8

  23. Winter Upper-Ocean Stability and Ice–Ocean Feedbacks in the Sea Ice–Covered Southern Ocean
    Wilson, E.A., S.C. Riser, E.C. Campbell, and A.P. Wong (2019). Winter Upper-Ocean Stability and Ice–Ocean Feedbacks in the Sea Ice–Covered Southern Ocean. J. Phys. Oceanogr., 49, 1099–1117. DOI:10.1175/JPO-D-18-0184.1

  24. A deep eastern boundary current carrying Indian Deep Water south of Australia
    Tamsitt, V., L.D. Talley, M.R. Mazloff (2019). JA deep eastern boundary current carrying Indian Deep Water south of Australia. . Geophys. Res.Oceans, 124. DOI:10.1029/2018JC014569

  25. Deciphering patterns and drivers of anthropogenic heat and carbon storage in the Southern Ocean
    Chen, H, A. K. Morrison, C. O. Dufour, J.L. Sarmiento (2019). Deciphering patterns and drivers of anthropogenic heat and carbon storage in the Southern Ocean. Geophys. Res. Let. DOI:10.1029/2018GL080961

  26. The Effects of Enhanced Sea Ice Export from the Ross Sea on Recent Cooling and Freshening of the Southeast Pacific
    Cerovečki, I., A.J. Meijers, M.R. Mazloff, S.T. Gille, V.M. Tamsitt, and P.R. Holland (2019). The Effects of Enhanced Sea Ice Export from the Ross Sea on Recent Cooling and Freshening of the Southeast Pacific. J. Climate, 32, 2013–2035. DOI:10.1175/JCLI-D-18-0205.1 

  27. The water mass transformation framework for ocean physics and biogeochemistry
    Groeskamp, S., S.M. Griffies, D. Iudicone, R. Marsh, A.J.G. Nurser, and J.D. Zika, (2019). The water mass transformation framework for ocean physics and biogeochemistry. Annual Review of Marine Science, 11, 271-305.  DOI:10.1146/annurev-marine-010318-095421

  28. Southern Ocean biogeochemical float deployment strategies, with example from the Greenwich Meridian line (GO-SHIP A12)
    Talley, L.D., I. Rosso, I. Kamenkovich, M.E. Mazloff, J.Wang, E. Boss, A.R. Gray, K.S. Johnson, R. Key, S.C. Riser, N.L. Williams, and J.L. Sarmiento (2019). Southern Ocean biogeochemical float deployment strategies, with example from the Greenwich Meridian line (GO-SHIP A12). J. Geophys. Res. - Oceans. DOI:10.1029/2018JC014059

2018

  1. Identifying Lagrangian coherent vortices in a mesocale eddy-permitting ocean model
    Tarshish, N., R. Abernathey, C. Zhang, C.O. Dufour, I. Frenger, and S.M. Griffies (2018). Identifying Lagrangian coherent vortices in a mesocale eddy-permitting ocean model. Ocean Modelling, 130, 15-28.. DOI: 10.1016/j.ocemod.2018.07.001

  2. Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion
    Swart, N.C.,  S.T. Gille, J.C. Fyfe & N.P. Gillett (2018). Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion. Nature Geoscience, 11, 836–841. DOI: 10.1038/s41561-018-0226-1

  3. Low-nutrient organic matter in the Sargasso Sea thermocline: A hypothesis for its role, identity, and carbon cycle implications
    Fawcett, S. E., K. S. Johnson, S. C. Riser, N. Van Oostende, and D. M. Sigman (2018). Low-nutrient organic matter in the Sargasso Sea thermocline: A hypothesis for its role, identity, and carbon cycle implications. Marine Chemistry. DOI:10.1016/j.marchem.2018.10.008

  4. Evidence of jet‐scale overturning ocean circulations in Argo float trajectories
    Li, Q., Lee, S., & M. Mazloff (2018).  Evidence of jet‐scale overturning ocean circulations in Argo float trajectories. Geophysical Research Letters, 45. DOI:10.1029/2018GL078950

  5. Southern Ocean [in “State of the Climate in 2017”]
    Swart, S, K.S. Johnson, M.R. Mazloff, A. Meijers, M.P. Meredith, L. Newman, and J.-B. Sallée (2018).  Southern Ocean [in “State of the Climate in 2017”]. Bull. Amer. Meteor. Soc.. 99(8).

  6. Change in future climate due to Antarctic meltwater
    Bronselaer, B., M. Winton, S.M. Griffies, R.J. Stouffer, W.J. Hurlin, O.V. Sergienko, K. Rodgers, J. Russell (2018). Change in future climate due to Antarctic meltwater. Nature, 564, 53–58, DOI:10.1038/s41586-018-0712-z

  7. Observing the ice covered Weddell Sea with profiling floats: position uncertainties and correlation statistics
    Chamberlain, P., L.D. Talley, M. Mazloff, S. Riser, K. Speer, A.R. Gray, 2018. Observing the ice covered Weddell Sea with profiling floats: position uncertainties and correlation statistics. J. Geophys. Res. -Oceans, DOI:10.1029/2017JC012990

  8. An Alternative to Static Climatologies: Robust Estimation of Open Ocean CO2 Variables and Nutrient Concentrations From T, S, and O2 Data Using Bayesian Neural Networks
    Bittig, H.C., T. Steinhoff, H.Claustre, B. Fiedler, N.L. Williams, R. Sauzède, Arne Körtzinger, and J.-P. Gattuso, 2018. An Alternative to Static Climatologies: Robust Estimation of Open Ocean CO2 Variables and Nutrient Concentrations From T, S, and O2 Data Using Bayesian Neural Networks. Front. Mar. Sci., 20. DOI:10.3389/fmars.2018.00328

  9. When mixed layers are not mixed: Storm-driven mixing and bio-optical vertical gradients in mixed layers of the Southern Ocean
    Carranza, M. M., S. T. Gille, P. J. S. Franks, K. S. Johnson, R. Pinkel, and J. B. Girton, 2017. When mixed layers are not mixed: Storm-driven mixing and bio-optical vertical gradients in mixed layers of the Southern OceanJ. Geophys. Res. Oceans. DOI:10.1029/2018JC014416

  10. Autonomous biogeochemical floats detect significant carbon dioxide outgassing in the high-latitude Southern Ocean
    Gray, A.R., K.S. Johnson, S.M. Bushinsky, S.C. Riser, J.L. Russell, L.D. Talley, R. Wanninkhof, N.L. Williams, and J.L. Sarmiento (2018). Autonomous biogeochemical floats detect significant carbon dioxide outgassing in the high-latitude Southern Ocean. Geophys. Res. Lett.. DOI:10.1029/2018GL078013

  11. Evolving relative importance of the Southern Ocean and North Atlantic in anthropogenic ocean heat uptake
    Shi, J.-R., S.-P. Xie, and L. D. Talley (2018). Evolving relative importance of the Southern Ocean and North Atlantic in anthropogenic ocean heat uptake. J. Climate. DOI:10.1175/JCLI-D-18-0170.1

  12. Utilizing the Drake Passage Time-series to understand variability and change in subpolar Southern Ocean pCO2
    Fay, A.R., N.S. Lovenduski, G.A. McKinley, D.R. Munro, C. Sweeney, A.R. Gray, P. Landschützer, B. Stephens, T. Takahashi, and N. Williams (2018). Utilizing the Drake Passage Time-series to understand variability and change in subpolar Southern Ocean pCO2. Biogeosciences, 15. DOI:10.5194/bg-15-3841-2018

  13. Assessment of the Carbonate Chemistry Seasonal Cycles in the Southern Ocean from Persistent Observational Platforms
    Williams, N.L., L.W. Juranek, R.A. Feely, J.L. Russell, K.S. Johnson, B. Hales (2018). Assessment of the Carbonate Chemistry Seasonal Cycles in the Southern Ocean from Persistent Observational Platforms. J. Geophys. Res. Oceans. DOI:10.1029/2017JC012917

  14. Numerical simulations to project Argo float positions in the mid-depth and deep southwest Pacific
    Wang, T., S.T. Gille, M.R. Mazloff, N.V. Zilberman, and Y. Du (2018). Numerical simulations to project Argo float positions in the mid-depth and deep southwest Pacific. J. Atmos. Oceanic Technol., 0. DOI:10.1175/JTECH-D-17-0214.1

  15. Assessment of autonomous pH measurements for determining surface seawater partial pressure of CO2
    Takeshita, Y., K.S. Johnson, T.R. Martz, J.N. Plant, and J.L. Sarmiento (2018). Assessment of autonomous pH measurements for determining surface seawater partial pressure of CO2.  J. Geophys. Res. Oceans. DOI:10.1029/2017JC013387

  16. Episodic Southern Ocean heat loss and its mixed layer impacts revealed by the farthest south multiyear surface flux mooring
    Ogle, S.E., V. Tamsitt, S. A. Josey, S.T. Gille, I. Cerovecki, L.D. Talley, R.A. Weller (2018).Episodic Southern Ocean heat loss and its mixed layer impacts revealed by the farthest south multiyear surface flux mooring.  Geophys. Res. Lett., 45. DOI:10.1029/2017GL076909.

  17. Profiling Floats in SOCCOM: Technical Capabilities for Studying the Southern Ocean
    Riser, S., D. Swift, and R. Drucker (2018). Profiling Floats in SOCCOM: Technical Capabilities for Studying the Southern Ocean. J. Geophys. Res. Oceans. DOI:10.1002/2017/JCO13419

  18. Assessment of Export Efficiency Equations in the Southern Ocean Applied to Satellite-Based Net Primary Production
    Arteaga, L., N. Haëntjens, E. Boss, K.S. Johnson, and J.L. Sarmiento (2018). Assessment of Export Efficiency Equations in the Southern Ocean Applied to Satellite-Based Net Primary Production. J. Geophys. Res. Oceans. DOI:10.1002/2018JC013787

  19. Lagrangian Timescales of Southern Ocean Upwelling in a Hierarchy of Model Resolutions
    Drake, H.F., A.K. Morrison, S.M. Griffies, J.L. Sarmiento, W. Weijer, and A.R. Gray (2018). Lagrangian Timescales of Southern Ocean Upwelling in a Hierarchy of Model Resolutions. Geophysical Research Letters, 45, 891–898. DOI:10.1002/2017GL076045

  20. Transformation of Deep Water Masses Along Lagrangian Upwelling Pathways in the Southern Ocean
    Tamsitt, V., R. P. Abernathey, M. R. Mazloff, J. Wang, L. D. Talley (2018). Transformation of Deep Water Masses Along Lagrangian Upwelling Pathways in the Southern Ocean. J. Geophys. Res. Oceans. DOI:10.1002/2017JC013409

  21. Metrics for the Evaluation of the Southern Ocean in Coupled Climate Models and Earth System Models
    Russell, J.R., I. Kamenkovich, C. Bitz, R. Ferrari, S.T. Gille P.J. Goodman, R. Hallberg, K. Johnson K. Khazmutdinova, I. Marinov, M. Mazloff, S. Riser, J.L. Sarmiento Kevin Speer Lynne D. Talley and R. Wanninkhof. (2018). Metrics for the Evaluation of the Southern Ocean in Coupled Climate Models and Earth System Models. J. Geophys. Res. Oceans. DOI:10.1002/2017JC013461

  22. Correlation Lengths for Estimating the Large-Scale Carbon and Heat Content of the Southern Ocean
    Mazloff, M., B.D. Cornuelle, S.T. Gille, and A. Verdy (2018). Correlation Lengths for Estimating the Large-Scale Carbon and Heat Content of the Southern Ocean. J. Geophys. Res. Oceans, 122. DOI:10.1002/2017JC013408

  23. A Multi-variate Empirical Orthogonal Function Method to Construct Nitrate Maps in the Southern Ocean
    Liang, Y., M.R. Mazloff, I. Rosso, S. Fang, and J. Yu (2018). A Multi-variate Empirical Orthogonal Function Method to Construct Nitrate Maps in the Southern Ocean. J. Atmos. Oceanic Technol. DOI:10.1175/JTECH-D-18-0018.1

  24. Interfacial form stress in the Southern Ocean state estimate
    Masich, J., Mazloff, M. R., & Chereskin, T. K. (2018). Interfacial form stress in the Southern Ocean state estimate. Journal of Geophysical Research: Oceans, 123. DOI:10.1029/2018JC013844

  25. Estimating Oxygen in the Southern Ocean using Argo Temperature and Salinity
    Giglio, D. , Lyubchich, V. and Mazloff, M. R. (2018), Estimating Oxygen in the Southern Ocean using Argo Temperature and Salinity. J. Geophys. Res. Oceans. DOI:10.1029/2017JC013404

  26. Toward deeper development of Biogeochemical-Argo floats
    Xing, X., H. Claustre, E. Boss, and F. Chai (2018). Toward deeper development of Biogeochemical-Argo floats. Atmospheric and Oceanic Science Letters, 11 (3). DOI:10.1080/16742834.2018.1457932

  27. Oxygen optode sensors: principle, characterization, calibration and application in the ocean
    Bittig, H. C., A. Körtzinger, C. Neill, E. van Ooijen, J. N. Plant, J. Hahn, K. S. Johnson, B. Yang, and S. R. Emerson (2018). Oxygen optode sensors: principle, characterization, calibration and application in the ocean. Frontiers in Marine Science. DOI:10.3389/fmars.2017.00429.

2017

  1. Physical and biological drivers of biogeochemical tracers within the seasonal ice zone of the Southern Ocean from profiling floats
    Briggs, E., T. R. Martz, L. D. Talley, M. R. Mazloff and K.S. Johnson (2017). Physical and biological drivers of biogeochemical tracers within the seasonal ice zone of the Southern Ocean from profiling floats. J. Geophys. Res. Oceans, 123. DOI:10.1002/2017JC012846

  2. Updated methods for global locally interpolated estimation of alkalinity, pH, and nitrate
    Carter, B. R., R.A. Feely, N.L. Williams. A.G. Dickson, M.B. Fong, Y. Takeshita (2017). Updated methods for globally locally-interpolated estimation of alkalinity, pH, and Nitrate. Limnology & Oceanography Methods,16, 119–131. DOI:10.1002/lom3.10232

  3. Agreement of CMIP5 Simulated and Observed Ocean Anthropogenic CO2 Uptake
    Bronselaer, B., M. Winton, J. Russell, C.L. Sabine, and S. Khatiwala (2017). Agreement of CMIP5 Simulated and Observed Ocean Anthropogenic CO2 Uptake. Geophys. Res. Lett., DOI:10.1002/2017GL074435

  4. Oxygen in the Southern Ocean from Argo floats: Determination of processes driving air-sea fluxes
    Bushinsky, S.M., A.R. Gray, K.S. Johnson, J.L. Sarmiento (2017). Oxygen in the Southern Ocean from Argo floats: Determination of processes driving air-sea fluxes. J. Geophys. Res. Ocean,122. DOI:10.1002/2017JC012923

  5. Lagrangian ocean analysis: fundamentals and practices
    van Sebille, E., S. M. Griffies, R. Abernathey, T. P. Adams, P. Berloff, A. Biastoch, B. Blanke, E. P. Chassignet, Y. Cheng, C. J. Cotter, E. Deleersnijder, K. Döös, H. Drake, S. Drijfhout, S. F. Gary, A. W. Heemink, J. Kjellsson, I. M. Koszalka, M. Lange, C. Lique, G. A. MacGilchrist, R. Marsh, C. G. Mayorga Adame, R. McAdam, F. Nencioli, C. B. Paris, M. D. Piggott, J. A. Polton, S. Rühs, S. H. A. M. Shah, M. D. Thomas, J. Wang, P. J. Wolfram, L. Zanna, J. D. Zika (2017). Lagrangian ocean analysis: fundamentals and practices. Ocean Modeling. DOI:10.1016/j.ocemod.2017.11.008

  6. CO2-induced ocean warming around the Antarctic ice sheet in an eddying global climate model
    Goddard, P., C. O. Dufour, J. Yin, S. M. Griffies, and M. Winton (2017). CO2-induced ocean warming around the Antarctic ice sheet in an eddying global climate model. J. Geophys. Res. Oceans, 122. DOI:10.1002/2017JC012849

  7. Space and time variability of the Southern Ocean carbon budget
    Rosso, I, M.R. Mazloff, A. Verdy, and L.D. Talley (2017). Space and time variability of the Southern Ocean carbon budget.  J. Geophys. Res. Oceans, 122. DOI:10.1002/2016JC012646

  8. A data assimilating model for estimating Southern Ocean biogeochemistry
    Verdy.A. and M.R. Mazloff (2017). A data assimilating model for estimating Southern Ocean biogeochemistry.  J. Geophys. Res. Oceans, 122. DOI:10.1002/2016JC012650

  9. Observing System Simulation Experiments for an array of autonomous biogeochemical profiling floats in the Southern Ocean
    Kamenkovich, I., A. Haza, A. R. Gray, C. O. Dufour, Z. Garraffo (2017), Observing System Simulation Experiments for an array of autonomous biogeochemical profiling floats in the Southern Ocean. J. Geophys. Res. Oceans, 122. DOI:10.1002/2017JC012819

  10. Annual nitrate drawdown observed by SOCCOM profiling floats and the relationship to annual net community production
    Johnson, K.S. J.N. Plant, L.D. Talley, J.L. Sarmiento (2017). Annual nitrate drawdown observed by SOCCOM profiling floats and the relationship to annual net community production. J. Geophys. Res. Oceans, 122, 6668–6683. DOI:10.1002/2017JC012839

  11. Localized rapid warming of West Antarctic Peninsula subsurface waters by remote winds
    Spence, J., R. Holmes, A. McC. Hogg, S.M. Griffies, K.D. Stewart, and M.H. England (2017). Localized rapid warming of West Antarctic Peninsula subsurface waters by remote winds. Nature Climate Change. DOI:10.1038/NCLIMATE3335

  12. Biogeochemical sensor performance in the SOCCOM profiling float array
    Johnson, K.S., J.N. Plant, L.J. Coletti, H.W. Jannasch, C.M. Sakamoto, S.C. Riser, D.D. Swift, N.L. Williams, E. Boss, N. Haëntjens, L.D. Talley, J.L. Sarmiento (2017). Biogeochemical sensor performance in the SOCCOM profiling float array. J. Geophys. Res. Oceans, 122, 6416–6436. DOI:10.1002/2017JC012838

  13. Preconditioning of the Weddell Sea polynya by the ocean mesoscale and dense water overflows
    Dufour, C. O., A. K. Morrison, S. M. Griffies, I. Frenger, H. Zanowski, M. Winton (2017). Preconditioning of the Weddell Sea polynya by the ocean mesoscale and dense water overflows. Journal of Climate. DOI:10.1175/JCLI-D-16-0586.1

  14. Revisiting Ocean Color algorithms for chlorophyll a and particulate organic carbon in the Southern Ocean using biogeochemical floats
    Haëntjens, N., E. S. Boss, L. D. Talley (2017). Revisiting Ocean Color algorithms for chlorophyll a and particulate organic carbon in the Southern Ocean using biogeochemical floats. J. Geophys. Res. Oceans, 122, 6583–6593. DOI:10.1002/2017JC012844

  15. Spiraling up: pathways of global deep waters to the surface of the Southern Ocean
    Tamsitt, V., H. Drake , A. K. Morrison , L. D. Talley , C. O. Dufour , A. R. Gray, S. M. Griffies , M. R. Mazloff, J. L. Sarmiento , J. Wang , W. Weijer (2017). Spiraling up: pathways of global deep waters to the surface of the Southern Ocean. Nature Communications, 172, 8. DOI:10.1038/s41467-017-00197-0

  16. Southern Ocean [in “State of the Climate in 2016”]
    Mazloff, M.R., J.-B.Sallée J-B, V.V. Menezes VV, A.M.Macdonald, M.P. Meredith, L. Newman, V. Pellichero, F. Roquet, S. Swart, A. Wåhlin (2017). Southern Ocean [in “State of the Climate in 2016”]. Bull. Amer. Meteor. Soc.. 98(8), S155-S172.

  17. Estimates of Water-Column Nutrients and Carbonate System Parameters in the Global Ocean: A Novel Approach Based on Neural Networks
    Sauzède R., H. Claustre, O. P. de Fommervault, H. Bittig, J.-P. Gattuso, L. Legendre, and K. S. Johnson (2017). Estimates of Water-Column Nutrients and Carbonate System Parameters in the Global Ocean: A Novel Approach Based on Neural Networks. Front. Mar. Sci. 4:128. DOI:10.3389/fmars.2017.00128

  18. Developing chemical sensors to observe the health of the global ocean
    Johnson, K. S. (2017). Developing chemical sensors to observe the health of the global ocean. IEEE Transducers 2017. DOIi:10.1109/TRANSDUCERS.2017.7993975

  19. Importance of mesoscale eddies and mean circulation in ventilation of the Southern Ocean
    Kamenkovich, I., Z. Garraffo, R. Pennel, and R. A. Fine (2017). Importance of mesoscale eddies and mean circulation in ventilation of the Southern Ocean. J. Geophys. Res. Oceans, 122, 2724–2741. DOI:10.1002/2016JC012292

  20. Calculating surface ocean pCO2 from biogeochemical Argo floats equipped with pH: an uncertainty analysis
    Williams, N. L., L. W. Juranek, R. A. Feely, K. S. Johnson, J. L. Sarmiento, L. D. Talley, J. L. Russell, S. C. Riser, A. G. Dickson, A. R. Gray, R. Wanninkhof, and Y. Takeshita (2017). Calculating surface ocean pCO2 from biogeochemical Argo floats equipped with pH: an uncertainty analysis. Global Biogeochemical Cycles., 31(3). DOI:10.1002/2016GB005541

  21. Wind modulation of upwelling at the shelf-break front off Patagonia: Observational evidence
    Carranza, M. M., S. T. Gille, A. R. Piola, M. Charo, and S. I. Romero (2017), Wind modulation of upwelling at the shelf-break front off Patagonia: Observational evidence. J. Geophys. Res. Oceans, 122, 2401–2421. DOI:10.1002/2016JC012059

2016

  1. In situ phase-domain calibration of oxygen optodes on profiling floats
    Drucker, R. and S. C. Riser (2016). In situ phase-domain calibration of oxygen optodes on profiling floats. Methods in Oceanography, 17, 206-318. DOI:10.1016/j.mio.2016.09.007

  2. Assessing recent trends in high-latitude Southern Hemisphere surface climate
    Jones, J. M., S. T. Gille, H. Goosse, N. J. Abram, P. O. Canziani, D. J. Charman, K. R. Clem, X. Crosta, C. de Lavergne, I. Eisenman, M. H. England, R. L. Fogt, L. M. Frankcombe, G. J. Marshall, V. Masson-Delmotte, A. K. Morrison, A. J. Orsi, M. N. Raphael, J. A. Renwick, D. P. Schneider, G. R. Simpkins, E. J. Steig, B. Stenni, D. Swingedouw and T. R. Vance (2016). Assessing recent trends in high-latitude Southern Hemisphere surface climate. Nature Climate Change, 6, 917-926. DOI:10.1038/NCLIMATE3103

  3. Temporal changes in the Antarctic Circumpolar Current: Implications for the Antarctic continental shelves
    Gille, S. T., D. C. McKee and D. G. Martinson (2016). Temporal changes in the Antarctic Circumpolar Current: Implications for the Antarctic continental shelves. Oceanography, 29(4), 96-105. DOI:10.5670/oceanog.2016.102

  4. Bringing biogeochemistry into the Argo age
    Johnson, Kenneth S., and H. Claustre (2016). Bringing biogeochemistry into the Argo age. Eos, 97. DOI:10.1029/2016EO062427

  5. An advective mechanism for Deep Chlorophyll Maxima formation in southern Drake Passage
    Erickson Z.K, A.F. Thompson, N. Cassar, J. Sprintall, and M.R. Mazloff (2016). An advective mechanism for Deep Chlorophyll Maxima formation in southern Drake Passage. Geophys. Res. Lett., 43. DOI:10.1002/2016GL070565

  6. The effect of the Kerguelen Plateau on the ocean circulation
    Wang, J., M.R. Mazloff, S.T. Gille (2016). The effect of the Kerguelen Plateau on the ocean circulation. J. Phys. Oceanogr. DOI:10.1175/JPO-D-15-0216.1

  7. How does Subantarctic Mode Water ventilate the Southern Hemisphere subtropics?
    Jones, D. C., A.J.S. Meijers, E. Shuckburgh, J.-B. Sallée, P. Haynes, E. Karczewska, and M.R. Mazloff (2016). How does Subantarctic Mode Water ventilate the Southern Hemisphere subtropics? J. Geophys. Res. Oceans, 121 (9). DOI:10.1002/2016JC011680

  8. Profiling float-based observations of net respiration beneath the mixed layer
    Hennon, T.D., S.C. Riser, S. Mecking (2016). Profiling float-based observations of net respiration beneath the mixed layer. Global Biogeochem. Cycles, 30, 920–932. DOI:10.1002/2016GB005380

  9. Meridional overturning transports at 30°S in the Indian and Pacific Oceans in 2002-2003 and 2009
    Hernandez-Guerra, A. and L. D. Talley (2016). Meridional overturning transports at 30°S in the Indian and Pacific Oceans in 2002-2003 and 2009. Progress in Oceanography, 146, 89–120. DOI:10.1016/j.pocean.2016.06.005

  10. Zonal variations in the Southern Ocean heat budget
    Tamsitt, V., L. Talley, M. Mazloff, I. Cerovecki (2016). Zonal variations in the Southern Ocean heat budget. J. Climate, 9 (18). DOI:10.1175/JCLI-D-15-0630.1

  11. Water mass transformation by sea ice in the upper branch of the Southern Ocean overturning
    Abernathey, R.P., I. Cerovecki, P. Holland, E. Newsom, M. Mazloff and L. D. Talley (2016). Water mass transformation by sea ice in the upper branch of the Southern Ocean overturning. Nature Geosciences, 9, 596–601. DOI:10.1038/ngeo2749

  12. Bottom pressure torque and the vorticity balance from observations in Drake Passage
    Firing, Y.L., T.K. Chereskin, R.D. Watts and M.R. Mazloff (2016). Bottom pressure torque and the vorticity balance from observations in Drake Passage. Journal of Geophysical Research - Oceans, 121, 6, 4282–4302. DOI:10.1002/2016JC011682

  13. An oceanic heat transport pathway to the Amundsen Sea Embayment
    Rodriguez, A. R., M. R. Mazloff, and S. T. Gille (2016). An oceanic heat transport pathway to the Amundsen Sea Embayment. Journal of Geophysical Research - Oceans, 121, 5, 3337–3349. DOI:10.1002/2015JC011402

  14. Mechanisms of Southern Ocean Heat Uptake and Transport in a Global Eddying Climate Model
    Morrison, A. K, S.M. Griffies, M. Winton, W.G. Anderson, and J.L Sarmiento (2016). Mechanisms of Southern Ocean Heat Uptake and Transport in a Global Eddying Climate Model. Journal of Climate, 29, 2059–2075. DOI:10.1175/JCLI-D-15-0579.1

  15. Empirical Algorithms to Estimate Water Column pH in the Southern Ocean
    Williams, N. L., L. W. Juranek, K. S. Johnson, R. A. Feely, S. C. Riser, L. D. Talley, J. L. Russell, J. L. Sarmiento, and R. Wanninkhof (2016). Empirical Algorithms to Estimate Water Column pH in the Southern Ocean. Geophys. Res. Lett., 43, 7, 3415–3422. DOI:10.1002/2016GL068539

  16. Stratified tidal flow over a tall ridge above and below the turning latitude
    Musgrave, R. C., R. Pinkel, J. A. MacKinnon, Matthew R. Mazloff and W. R. Young (2016). Stratified tidal flow over a tall ridge above and below the turning latitude. Journal of Fluid Mechanics, 793, 933-957. DOI:10.1017/jfm.2016.150

  17. Rapid variability of Antarctic Bottom Water transport into the Pacific Ocean inferred from GRACE
    Mazloff, M. and C. Boening (2016). Rapid variability of Antarctic Bottom Water transport into the Pacific Ocean inferred from GRACE. Geophys. Res. Lett., 43, 8, 3822–3829. DOI:10.1002/2016GL068474

  18. Accurate oxygen measurements on modified Argo floats using in situ air calibrations
    Bushinsky, S. M., S. R. Emerson, S. C. Riser, and D. D. Swift. (2016). Accurate oxygen measurements on modified Argo floats using in situ air calibrations. Limnol. Oceanogr. Methods, DOI:10.1002/lom3.10107.

  19. Deep-Sea DuraFET: A pressure tolerant pH sensor designed for global sensor networks
    Johnson, K. S., H. W. Jannasch, L. J. Coletti, V. A. Elrod, T. R. Martz, Y. Takeshita, R. J. Carlson, J. G. Connery (2016). Deep-Sea DuraFET: A pressure tolerant pH sensor designed for global sensor networks. Analytical Chemistry,88(6), 3249-3256. DOI: 10.1021/acs.analchem.5b04653

  20. Fifteen years of ocean observations with the global Argo array
    Riser, S.C., H.J. Freeland, D. Roemmich, S. Wijffels, A. Troisi, M. Belbéoch, D. Gilbert, J. Xu, S. Pouliquen, A. Thresher, P. Le Traon, G. Maze, B. Klein, M. Ravichandran, F. Grant, P. Poulain, T. Suga, B. Lim, A. Sterl, P. Sutton, K. Mork, P. J. Vélez-Belchí, I. Ansorge, B. King, J. Turton, M. Baringer & S. R. Jayne (2016). Fifteen years of ocean observations with the global Argo array. Nature Climate Change, 6, 145–153. DOI:10.1038/nclimate2872

  21. The spatiotemporal structure of diabatic processes governing the evolution of Subantarctic Mode Water in the Southern Ocean
    Cerovecki, I. and M. Mazloff (2016). The spatiotemporal structure of diabatic processes governing the evolution of Subantarctic Mode Water in the Southern Ocean. Journal of Physical Oceanography, 46, 683-710. DOI:10.1175/JPO-D-14-0243.1

2015

  1. Air oxygen calibration of oxygen optodes on a profiling float array
    Johnson, K. S., J. N. Plant, S. C. Riser, and D. Gilbert (2015). Air oxygen calibration of oxygen optodes on a profiling float array. Journal of Atmospheric and Oceanic Technology, 32, 2160–2172, 2016. DOI:10.1175/JTECH-D-15-0101.1

  2. Complex functionality with minimal computation: promise and pitfalls of reduced-tracer ocean biogeochemistry model
    Galbraith E. D., J. P. Dunne, A. Gnanadesikan, R. D. Slater, J. L. Sarmiento, C. O. Dufour, G. F. de Souza, D. Bianchi, M. Claret, K. B. Rodgers, S. S. Marvasti (2015). Complex functionality with minimal computation: promise and pitfalls of reduced-tracer ocean biogeochemistry model. Journal of Advances in Modeling Earth Systems, 7, 2012-2028. DOI:10.1002/2015MS000463

  3. Role of mesoscale eddies in cross-frontal transport of heat and biogeochemical tracers in the Southern Ocean
    C.O. Dufour, S.M., Griffies, G.F. de Souza, I. Frenger, A.K. Morrison, J.B. Palter, J.L. Sarmiento, E.D. Galbraith, J.P. Dunne, W.G. Anderson, R.D. Slater (2015). Role of mesoscale eddies in cross-frontal transport of heat and biogeochemical tracers in the Southern Ocean. J. Phys. Oceanogr., 45, 3057–3081. DOI:10.1175/JPO-D-14-0240.1

  4. Topographic form stress in the Southern Ocean State Estimate
    Masich, J., T. K. Chereskin, and M. R. Mazloff (2015). Topographic form stress in the Southern Ocean State Estimate. J. Geophys. Res. Oceans, 120, 7919–7933. DOI:10.1002/2015JC011143

  5. Quantifying anthropogenic carbon inventory changes in the Pacific Sector of the Southern Ocean
    Williams, N.L., R. A. Feely, C.L. Sabine, A.G. Dickson, J.H. Swift, L.D. Talley, J.L. Russell (2015). Quantifying anthropogenic carbon inventory changes in the Pacific Sector of the Southern Ocean. Marine Chemistry, 174,147–160. DOI:10.1016/j.marchem.2015.06.015

  6. Southern Ocean wind-driven entrainment enhances satellite chlorophyll-a through the summer
    Carranza, M.M. and S.T. Gille (2015). Southern Ocean wind-driven entrainment enhances satellite chlorophyll-a through the summer. Journal of Geophysical Research - Oceans, 120, 304-323. DOI:10.1002/2014JC010203

  7. Upwelling in the Southern Ocean
    A.K. Morrison, T.L. Froelicher, J.L. Sarmiento (2015). Upwelling in the Southern Ocean. Physics Today, 68, 1. DOI:10.1063/PT.3.2654

2014

Submitted publications

  • Acoustic float tracking with the Kalman smoother
    Chamberlain, P., B. Cornuelle, L. D. Talley, K. Speer, C. Hancock, and S. Riser (2022). Submitted to J. Atm. Oceanic Tech.

  • Climate mitigation averts corrosive acidification in the upper ocean
    Schlunegger, S., K. Rodgers, B. Hales, J. Dunne, M. Ishii, R.Yamaguchi, R. Slater (2021). Nature, under review.

  • "Direct observation of the three-dimensional meridional overturning circulation in the Southern Ocean"
    Gray, A. R. and S. C. Riser, in review, Science
     

Ph.D. Theses

  1. Semi-Lagrangian Float Motion and Observing System Design
    Chamberlain, Paul.  University of California San Diego, 2022.

  2. Physical controls on Southern Ocean biogeochemistry. 
    Prend, Channing. University of California San Diego, 2022.

  3. Modeling Heat and Carbon in the Argentine Basin
    Swierczek, Stan. University of Arizona, Tucson, 2021.

  4. Responses of the Southern Ocean in a Changing Climate
    Shi, Jia-rui.  University of California San Diego, 2021.

  5. Uncertainty of spectrophotometric pH measurements in seawater and implications for ocean carbon chemistry
    Fong, Michael. University of California San Diego, 2021.

  6. Representation of Large-Scale Ocean Circulation in the Atlantic and Southern Ocean in Climate Model Simulations and Projected Changes under Increased Warming
    Beadling, Rebecca.  University of Arizona, Tucson, 2020.

  7. Sea ice and upper ocean variability in the Southern Ocean
    Wilson, Earle, University of Washington, Seattle, 2019.

  8. Aspects of the Three-Dimensionality of the Southern Ocean Overturning Circulation
    Tamsitt, Veronica, University of California, San Diego, 2018.

  9. New Insights on the Southern Ocean Carbon Cycle from Biogeochemical Argo Floats
    Williams, Nancy L., Oregon State University, Corvallis, 2018.

  10. Expanding marine biogeochemical observations utilizing ISFET pH sensing technology and autonomous platforms
    Briggs, Ellen M., University of California, San Diego, 2017.
     

Articles

  1. Bringing biogeochemistry into the Argo age
    Johnson, K. S., and H. Claustre (2016), Eos, 97.
  2. Anthropogenic carbon and heat uptake by the ocean: Will the Southern Ocean remain a major sink?
    Dufour, C. O., I. Frenger, T. L. Frolicher, A. R. Gray, S. M. Griffes, A. K. Morrison, J. L. Sarmiento, and S. A. Schlunegger (2015). US CLIVAR Variations, 13(4), Fall, pp. 1-8.
  3. Estimating Southern Ocean air-sea fluxes from models and observations
    Gille, S., I. Cerovecki, M. Mazloff, and V. Tamsitt (2015). US CLIVAR Variations, 13(4), Fall, pp. 8-12.
  4. Workshop Summary: Air-Sea Fluxes in the Southern Ocean
    Gille, S. (2015), September 21-23, Frascati, Italy, CliC News, 21 October.
  5. Workshop: Southern Ocean Air-Sea Fluxes, 21-23 September 2015 - Frascati, Italy
    Mazloff, M. and S. Swart (2015). SOOS Newsletter.
  6. Air-Sea Fluxes for the Southern Ocean: Strategies and Requirements for Detecting Physical and Biogeochemical Exchanges
    Gille, S., S. Josey, and and S. Swart (2016). Eos, 13 May.
  7. State estimation for determining the properties and sensitivities of the Southern Ocean carbon cycle
    Mazloff, M., and A. Verdy (2015). US CLIVAR Variations, 13(4), Fall, pp. 20-25.
  8. Biogeochemical metrics for the evaluation of the Southern Ocean in Earth system models
    Russell, J.R. and I. Kamenkovich (2015). US CLIVAR Variations, 13(4), Fall, pp. 26-31.
  9. The Southern Ocean Carbon and Climate Observations and Modeling Program (SOCCOM)
    Russell, J.R., J.L. Sarmiento, H. Cullen, R. Hotinski, K. Johnson, S. Riser, and L. Talley (2014). Ocean Carbon and Biogeochemistry Newsletter, Fall, pp. 1-5.
     

Reports & White Papers