Home

What you should know about SOCCOM data

Watch Ken Johnson's webinar on the QC process for float data.

Another profile from float 9094

The next profile for float 9094 is in this morning. It will be the last one before the contest closes on the 30th. Use SOCCOMViz to examine the data:

http://soccom.princeton.edu/soccomviz.php

The ice edge bloom

I wrote about the spring bloom seen by our profiling floats in my last post. Those floats were all in open water. Massive phytoplankton blooms along the ice edge are a major feature of Southern Ocean waters. Our floats operate under ice and, as the ice melts back, these float can observe the ice edge blooms.

SOCCOM Google Hangout

Join us for a Google Hangout on Air on December 4 at 2 pm!  For more information, click here.

Deep Mixing in the Southern Ocean and the Spring Bloom as seen by SOCCOM profiling floats.

The spring bloom is well underway in the Southern Ocean.  SOCCOM float 9095 at 50 degrees South shows the event quite nicely.  The following figure (Fig. 1) has observations of temperature, salinity, pH at in situ temperature and pressure (on the total proton scale), oxygen, nitrate, backscatter (a measure of particle abundance), and chlorophyll that have been reported by 9095 since it was deployed on the P16S cruise in April.

Interesting float data for the week of October 19, 2014

We'll provide updates on interesting oceanographic observations reported by the SOCCOM profiling floats in this space.  Our first report doesn't actually involve the Southern Ocean.  It's from a profiling float in the North Atlantic that was near Hurricane Gonzalo and it concerns mixing of the ocean and possible biological responses.  But we will compare the impact of a tropical cyclone to the amount of mixing seen in the Southern Ocean in a later post. So read on.

 

Southern Ocean's role in climate regulation, ocean health goal of $21 million federal grant

SOCCOM Project

The Southern Ocean that encircles Antarctica lends a considerable hand in keeping Earth's temperature hospitable, accounting for half of the ocean's uptake of human-made carbon from the atmosphere and the majority of its uptake of heat. Yet, the inner workings — and global importance — of this ocean that accounts for 30 percent of the world's ocean area remains relatively unknown to scientists, as observations remain hindered by dangerous seas.

Princeton University and 10 partner institutions now seek to make the Southern Ocean better known scientifically and publicly through a $21 million program that will create a biogeochemical and physical portrait of the ocean using hundreds of robotic floats deployed around Antarctica and an expanded computational capacity. The Southern Ocean Carbon and Climate Observations and Modeling program, or SOCCOM, is a six-year initiative headquartered at Princeton and funded by the National Science Foundation’s Division of Polar Programs, with additional support from the National Oceanic and Atmospheric Administration (NOAA) and NASA

"SOCCOM will enable top scientists from institutions around the country to work together on Southern Ocean research in ways that would not otherwise be possible," said SOCCOM director Jorge Sarmiento, Princeton's George J. Magee Professor of Geoscience and Geological Engineering and director of the Program in Atmospheric and Oceanic Sciences.

"The scarcity of observations in the Southern Ocean and inadequacy of earlier models, combined with its importance to the Earth's carbon and climate systems, means there is tremendous potential for groundbreaking research in this region," Sarmiento said.

Central to the program are roughly 200 floats outfitted with biogeochemical sensors that will provide almost continuous information related to the ocean's carbon, nutrient (nitrate, in particular) and oxygen content, both at and deep beneath the surface. The floats are augmented biogeochemical versions of the nearly 4,000 Argo floats deployed worldwide to measure ocean salinity and temperature. SOCCOM marks the first large-scale deployment of these biogeochemical floats.

"These floats are revolutionary and this major new observational initiative will give us unprecedented year-round coverage of biogeochemistry in the Southern Ocean," Sarmiento said.

The floats will increase the monthly data currently coming out of the Southern Ocean by 10 to 30 times, Sarmiento said. That data will be used to improve recently developed high-resolution earth-system models, which will allow for a better understanding of the Southern Ocean and for better projections of Earth’s climate and biogeochemical trajectory. In keeping with SOCCOM's knowledge sharing, or "broader impacts," component, all the information collected will be freely available to the public, researchers and industry.

SOCCOM will provide direct observations to further understand the importance of the Southern Ocean as suggested by models and ocean studies. Aside from carbon and heat uptake, models have indicated that the Southern Ocean delivers nutrients to lower-latitude surface waters that are critical to ocean ecosystems around the world. In addition, the impacts of ocean acidification as levels of carbon dioxide in atmosphere increase are projected to be most severe in the Southern Ocean.

Other than administering the project, Sarmiento and other Princeton researchers will co-lead the modeling and broader impacts components, as well as coordinated data management. Researchers from NOAA's Geophysical Fluid Dynamics Laboratory housed on Princeton's Forrestal Campus will carry out high-resolution earth-system simulations in support of the modeling effort, which is led by the University of Arizona and includes collaborators from the University of Miami.

The floats will be constructed at the University of Washington with sensors from the Monterey Bay Aquarium Research Institute; NOAA’s Climate Program Office will provide half of the basic Argo floats. Float deployment, observation analysis and data assimilation will be led by the Scripps Institution of Oceanography at the University of California-San Diego. Climate Central, a non-profit science and journalism organization based in Princeton, will oversee the broader-impacts component. Researchers from Oregon State University and NOAA will develop the floats’ carbon algorithms.

In addition, NASA will support a complementary project involving researchers at the University of Maine and Rutgers University that will equip the floats with bio-optical sensors intended to gather data about biological processes in the water column.

Dr. Lynne Talley testifies in Washington, DC

Dr. Lynne Talley - a Professor at the Scripps Institution of Oceanography - testified before the Subcommittee on Fisheries, Wildlife, Oceans and Insular Affairs on June 13th, 2013. Her testimony supported reauthorization of the Hydrographic Services Improvement Act of 1998 and reauthorization of the Integrated Coastal Ocean Observations System (ICOOS) Act of 2009. Dr.

Pages